Microstructure and Properties of AlCrFeCoNiCux High-Entropy Alloys | Journal of Engineering Sciences

Microstructure and Properties of AlCrFeCoNiCux High-Entropy Alloys

Author(s): Demchenko M. V.1, Gaponova O. P.1, Myslyvchenko O. M.2, Antoszewski B.3, Bychenko M. M.1

Affilation(s):
1 Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine;
2 Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, 3 Krzhizhanovsky St., 03680 Kyiv, Ukraine;
3 Politechnika Świętokrzyska, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

*Corresponding Author’s Address: gaponova@pmtkm.sumdu.edu.ua

Issue: Volume 5; Issue 1 (2018)

Dates:
Paper received: January 17, 2018
The final version of the paper received: May 21, 2018
Paper accepted online: May 22, 2018

Citation:
Demchenko M. V. Microstructure and Properties of AlCrFeCoNiCux High-Entropy Alloys / M. V. Demchenko, O. P. Gaponova, O. M. Myslyvchenko, B. Antoszewski, M. M. Bychenko // Journal of Engineering Sciences. – Sumy : Sumy State University, 2018. – Volume 5, Issue 1. – P. C11-C15.

DOI: 10.21272/jes.2018.5(1).c3

Research Area: MANUFACTURING ENGINEERING: Materials Science

Abstract. The peculiarities of the structure formation of alloys of the system AlCrFeCoNiCuх (where x = 0, 0.5, 1, 2, and 3 moles) were studied. Durometric studies of alloys of this system were carried out. Established that an alloy AlCrFeCoNiCu0.5 has the highest microhardness (6.1 GPa). Heat resistance tests showed that AlCrFeCoNi and AlCrFeCoNiCu have the highest heat resistance. The connection between the scale composition after the test and the mechanism of oxidation of this alloys revealed.

Keywords: high-entropy alloys, microstructure, microhardness, heat resistance.

References:

  1. Zhang, Y., Yang, X., & Liaw, P. K. (2012). Alloy Design and Properties Optimization of High-Entropy Alloys. Journal of the Minerals Metals & Materials Society, Vol. 64, Issue 7, 830–838.
  2. Yeh, J. W. (2013). Alloy Design Strategies and Future Trends in High-Entropy Alloys. Journal of the Minerals Metals & Materials Society, Vol. 65, Issue 12, 1759–1771.
  3. Zhang, L. S., Ma, G. L., Fu, L. C., & Tian, J. Y. (2013). Recent Progress in High-Entropy Alloys. Advanced Materials Research, Vol. 227, 631–632.
  4. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, Vol. 61, 1–93.
  5. Pogrebnyak, A. D., Bagdasaryan, A. A., Yakushchenko, I. V., & Beresnev, V. M. (2014). Struktura i svoystva vysokoentropiynykh splavov i nitridnykh pokrytiy na ikh osnove. Uspekhi khimii, No. 83 (11), 1027–1061 [in Russian].
  6. Karpets, V., Mislivchenko, A. N., Makarenko, A. S., Krapivka, N. A., & Gorban’, V. F. (2014). Mikrostruktura i fiziko-mekhanicheskiye svoystva visokoyentropiynogo splava AlCrCoNiCuFex. Fizika i khimiya tverdogo tela, Vol. 15, No. 3, 661-6656 [in Russian].
  7. Karpets, M. V., Mislivchenko, A. N., Makarenko, A. S., Krapivka, N. A., Gorban’ , V. F., & Samelyuk, A. V. (2014). Vlastyvosti bahatokomponentnoho vysokoentropiynoho splavu AlCrFeCoNi lehovannoho middyu. Problemy tertya ta znoshuvannya, No. 2, 103–1117 [in Ukrainian].
  8. Huang, Y. S., Chen, L., & Liu, H. W. (2007). Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Materials Science and Engineering: A, No. 457(1-2), 77–83.
  9. Tong, C.-J., Chen, Y.-L., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T., Tsau, C.-H., Chang, S.-Y. (2005). Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, Vol. 36, Issue 4, 881–893.
  10. Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19, 698–706.
  11. Butler, T. M., Alfano, J. P., Martens, R. L., & Weaver, M.L. (2015). High temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys. Journal of the Minerals Metals & Materials Society, 16, 246–259.
  12. Giggins, C. S., Pettit, F. S. (1971). Oxidation of Ni-Cr-Al alloys between 1 000°C and 1 200 °C. Journal of the Electrochemical Society, Vol. 118, 1782–1790.

Full Text




Scientific journal "The Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).

Faculty of Technical Systems and Energy Efficient Technologies
Sumy State University