Comparative Study of Physicochemical Properties and Antibiofilm Activity of Graphene Oxide Nanoribbons | Journal of Engineering Sciences

Comparative Study of Physicochemical Properties and Antibiofilm Activity of Graphene Oxide Nanoribbons

Author(s): Javanbakht T.*, Hadian H., Wilkinson K. J.

Affiliation(s): University of Montreal, 2900 Edouard-Montpetit Blvd, H3T 1J4, Montreal, Quebec, Canada

*Corresponding Author’s Address: taraneh.javanbakht@umontreal.ca

Issue: Volume 7, Issue 1 (2020)

Dates:
Paper received: December 14, 2019
The final version of the paper received: March 16, 2020
Paper accepted online: March 31, 2020

Citation:
Javanbakht T., Hadian H., Wilkinson K. J. (2020). Comparative study of physicochemical properties and antibiofilm activity of graphene oxide nanoribbons. Journal of Engineering Sciences, Vol. 7(1), pp. C1–C8, doi: 10.21272/jes.2020.7(1).c1

DOI: 10.21272/jes.2020.7(1).c1

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. In this article, the antibiofilm activity and physicochemical properties of graphene oxide (GO) nanoribbons, which have been among the most exciting materials, were studied by measuring the ratio of killed to alive bacteria incubated with these nanomaterials. Our objective was to determine the related physicochemical and antibiofilm properties of graphene oxide nanoribbons. We hypothesized that the physicochemical properties of graphene oxide nanoribbons could affect their antibiofilm activity. A combination of spectroscopic and microscopic measurements of the samples allowed us to determine their physicochemical properties affecting the biofilms. Our work includes information on the surface properties of these materials related to their incubation with the biofilms. The Fourier transform infrared spectroscopy showed the vibrations of OH groups of water molecules adsorbed on graphene oxide nanoribbons. The results show the high antibiofilm activity of the graphene oxide nanoribbons. The fluorescence confocal microscopy revealed that 50 % ± 3 % of the total number of bacteria were killed with these nanomaterials. The incubation of graphene oxide nanoribbons with bacterial biofilms resulted in the appearance of the NO2, NO3 peaks in the negative mode mass spectrum. The attenuation of the O and OHpeaks were attributed to the interactions of the samples with the biofilms. Our study gives more evidence of the practical value of graphene oxide nanoribbons in killing bacteria related to their surface physical properties and the potential of these nanomaterials for materials science and biomedical applications.

Keywords: nanomaterials, bacterial biofilm, Fourier transform, infrared spectroscopy, transmission electron microscopy, time-of-flight secondary ion mass spectrometry, confocal microscopy.

References:

  1. Goossens, H., Ferech, M., Vander-Stichele, R., Elseviers, M. (2005). Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet, Vol. 365(9459), pp. 579–587, doi: 10.1016/S0140-6736(05)17907-0.
  2. Motta, R. N., Oliveia, M., Megalhaes, P. S. F., Dias, A. M., Aragao, L. P., Forti, A. C., Carvalho, C. B. (2003). Plasmid mediated extended spectrum beta lactamase producing strains of enterobacteriaceae isolated from diabetes foot infections in a Brazilian diabetic centre. Brazilian Journal of Infectious Diseases, Vol. 7(2), pp. 1024–1032, doi: 10.1590/s1413-86702003000200006.
  3. Todar, K. (2008). Bacterial resistance to antibiotics In Principles of bacterial pathogenesis, Todar’s Online Textbook of Bacteriology Vol. 304, pp. 1421–1423.
  4. Flemming, H. C., Wingender, J. (2010). The Biofilm Matrix. Nature Reviews Microbiology, Vol. 8(9), pp. 623–633, doi: 10.1038/nrmicro2415.
  5. Flemming, H. C., Neu, T. R., Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells”. Journal of Bacteriology, Vol. 189(22), pp. 7945–7947, doi: 10.1128/JB.00858-07.
  6. Sutherland, I. W. (2001). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology, Vol. 147(Pt 1), pp. 3–9, doi: 10.1099/00221287-147-1-3.
  7. Ryder, C., Byrd, M., Wozniak, D. J. (2007). Role of polysaccharides in pseudomonas aeruginosa biofilm development. Current Opinion in Microbiology, Vol. 10(6), pp. 644–648, doi: 10.1016/j.mib.2007.09.010.
  8. Götz, F. (2002). Staphylococcus and biofilms. Molecular Microbiology, Vol. 43(6), pp. 1367–1378, doi: 10.1046/j.1365-2958.2002.02827.
  9. Vaningelgem, F., Zamfir, M., Mozzi, F., Adriany, T., Vancanneyt, M., Swings, J., De Vuyst, L. (2004). Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Applied and Environmental Microbiology, Vol. 70(2), pp. 900–912, doi: 10.1128/aem.70.2.900-912.2004.
  10. Lemos, J. A., Quivey, Jr. R. G., Koo, H., Arbanches, J. (2013). Streptococcus mutans: a new Gram-positive paradigm. Microbiology, Vol. 159(3), pp. 436–445, doi: 10.1099/mic.0.066134-0.
  11. Higginbotham, A. L., Kosynkin, D. V., Sinitskii, A., Sun, Z., Tour, J. M. (2010). Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano, Vol. 4(4): pp. 2059–2069, doi: 10.1021/nn100118m.
  12. Han, M. Y., Oezyilmaz, B., Zhang, Y., Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, Vol. 98(20), pp. 206805–206812, doi: 10.1103/PhysRevLett.98.206805.
  13. Li, X., Wang, X., Zhang, L., Lee, S., Dai, H. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, Vol. 319(5867), pp. 1229–1232, doi: 10.1126/science.1150878.
  14. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H. (2009). Narrow graphene nanoribbons from carbon nanotubes. Nature, Vol. 458(7240), pp. 877–880, doi: 10.1038/nature07919.
  15. Lerf, A., He, H., Forster, M., Klinowski, J. (1998). Structure of graphite oxide revisited. Journal of Physical Chemistry B, Vol. 102, pp. 4477–4482, doi: 10.1021/jp9731821.
  16. Mbeh, D. A., Akhavan, O., Javanbakht, T., Mahmoudi, M., Yahia, L. H. (2014). Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells. Applied Surface Science, Vol. 320, pp. 596–601, doi: 10.1021/nn200021j.
  17. Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiological Reviews, Vol. 50(4), pp. 353–380, doi: 0146-0749/86/040353.
  18. Cao, L., Zhang, Z. -Z., S. -B., Xu, Ma, M., Wei, X. (2017). Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression in Streptococcus mutans. The Journal of Biomedical Research, Vol. 31(4), pp. 333–343, doi: 10.7555/JBR.31.20150151.
  19. Banas, J. A., Vickerman, M.M. (2003). Glucan-binding proteins of the oral streptococci. Critical Reviews in Oralal Biology and Medicine, Vol. 14(2), pp. 89–99, doi: 10.1177/154411130301400203.
  20. Bowen, W. H., Koo, H. (2011). Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Research, Vol. 45(1): pp. 69–86, doi: 10.1159/000324598.
  21. Gross, E. L., Beall, C. J., Kutsch, S. R., Firestone, N. D., Leys, E. J., Griffen, A. L. (2012). Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLOS One, Vol. 7(10), e47722, doi: 10.1371/journal.pone.0047722.
  22. Lemos, J. A., Abranches, J., Burne, R. A. (2005). Responses of cariogenic streptococci to environmental stresses. Current Issues in Molecular Biology, Vol. 7(1), pp. 95–107, doi: 10.21775/cimb.007.095.
  23. Quivey, R. G., Kuhnert, W. L., Hahn, K. (2001). Genetics of acid adaptation in oral streptococci. Critical Reviews in Oral Biology and Medicine, Vol. 12(4), pp. 301–314, doi: 10.1177/10454411010120040201.
  24. Yadav, N., Dubey, A., Shukla, S., Saini, C. P., Gupta, G., Priyadarshini, R., Lochab, B. (2017). Graphene oxide coated surface: Inhibition of bacterial biofilm formation due to specific surface-interface interactions. ACS Omega, 2(7), pp. 3070–3082, doi: 10.1021/acsomega.7b00371.
  25. Mokkapati, V. R. S. S., Pandit, S., Kim, J., Martensson, A., Lovmar, M., Westerlund, F., Mijakovic, I. (2018). Bacterial response to graphene oxide and reduced graphene oxide integrated in agar plates. Royal Society Open Science, Vol. 5(11), pp. 181083–1810092, doi: 10.1098/rsos.181083.
  26. Fallatah, H., Elhaneid, M., Ali-Boucetta, H., Overton, T. W., El Kadri, H. (2019). Antibacterial effect of graphene oxide (GO) nano-particles against Pseudomonas putida biofilm of variable age. Environmental Science and Pollution Research, Vol. 26(24), pp. 25057–25070, doi: 10.1007/s11356-019-05688-9.
  27. Javanbakht, T., Laurent, S., Stanicki, D., Wilkinson, K. J. (2016). Relating the surface properties of superparamagnetic iron oxide nanoparticles (SPIONs) to their bactericidal effect towards a biofilm of Streptococcus mutans. PLOS One, Vol. 11(4), e0154445, doi: 10.1371/journal.pone.0154445.
  28. Choi, E. Y., Han, T. H., Hong, J., Kim, J. E., Lee, S. H., Kim, H. W., Kim, S. O. (2010). Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, Vol. 20(10), pp. 1907–1912, doi: 10.1039/b919074k.
  29. Javanbakht, T., Bérard, A., Tavares, J. R. (2016). Polyethylene glycol and poly(vinyl alcohol) hydrogels treated with photo-initiated chemical vapor deposition. Canadian Journal of Chemistry, 94(9), pp. 744750, doi: 10.1139/cjc-2016-0229.
  30. Javanbakht, T., Laurent, S., Stanicki, D., David, E. (2019). Related physicochemical, rheological, and dielectric properties of nanocomposites of superparamagnetic iron oxide nanoparticles with polyethyleneglycol. Journal of Applied Polymer Science, Vol. 137(3), pp. 4828048289, doi: 10.1002/app.48280.
  31. El-Naggar, N. E., Abdelwahed, N. A. M. (2014). Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes. Journal of Microbiology, Vol. 52(1), pp. 53–63, doi: 10.1007/s12275-014-3410-z.
  32. Suneetha, R. B. (2018) Spectral, thermal and morphological characterization of biodegradable graphene oxide chitosan nanocomposites. Journal of Nanoscience and Technology, Vol. 4(2), pp. 342–344, doi: 10.30799/jnst.sp208.18040201.
  33. Ammar, A., Al-Enizi, A. M., AlMaadeed, M. A., Karim, A. (2016). Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry, Vol. 9(2), pp. 274–286, doi: 10.1016/j.arabjc.2015.07.006.
  34. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramırez, J. T., Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, Vol. 16(10), pp. 2346–2353, doi: 10.1088/0957-4484/16/10/059.
  35. Rai, R. V., Bai, J. A. (2011). Nanoparticles and their potential application as antimicrobials. Science against microbial pathogens: Communicating Current Research and Technological Advances, In Méndez-Vilas, A. (Ed.), Formatex Research Center, Spain, Microbiology Series, Vol. 1(3), pp. 197–209.
  36. Pal, S., Tak, Y .K., Song, J. M. (2007). Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied Environmental Microbiology, Vol. 73(6), pp. 1712–1720, doi: 10.1128/AEM.02218-06.
  37. Goacher, R. E., Tsai, A. Y. -L., Master, E. R. (2013). Towards practical time-of-flight secondary ion mass spectrometry lignocellulolytic enzyme assays. Biotechnology for Biofuels, Vol. 6(1), pp. 132–144, doi: 10.1186/1754-6834-6-132.
  38. Mou, H. L., Wu, S., Fardim, P. (2016). Applications of ToF-SIMS in surface chemistry analysis of lignocellulosic biomass: A review. BioResearch. Vol. 11(2), pp. 5581–5599, doi: 10.15376/biores.11.2.
  39. Silhavy, T. J., Kahne, D., Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology. Vol. 2(5), a000414, doi: 10.1101/cshperspect.a000414.
  40. Beveridge, T. J. (1999). Structures of Gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology, Vol. 181(16), pp. 4725–4733, doi: 0021-9193/99.
  41. Dwivedi, S., Wahab, R., Khan, F., Mishra, Y. K., Musarrat, J., Al-Khedhairy, A. A. (2014). Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLOS One, 9(11), e111289, doi: 10.1371/journal.pone.0111289.
  42. Cap, M., Vachova, L., Palkova, Z. (2012). Reactive oxygen species in the signaling and adaptation of multicellular microbial communities, Oxidative Medicine and Cellular Longevity, 2012(11), pp. 976753–976765, doi: 10.1155/2012/976753.
  43. Santos, C. L., Albuquerque, A. J. R., Sampaio, F. C., Keyson, D. (2013). Nanomaterials with antimicrobial properties: applications in health sciences. Microbiological pathogens and strategies for combatting them. Science, Technology and Education, In Méndez-Vilas, A. (Ed.), Vol. 1(4), pp. 143–
  44. Hoseinzadeh, S., Ghasemiasl, R., Bahari A. Ramezani, A. H. (2018) Effect of post-annealing on the electrochromic properties of layer-by-layer arrangement FTO-WO3-Ag-WO3-Ag. Journal of Electronic Materials, 47, pp. 3552–3559, doi: 10.1007/s11664-018-6199-4.
  45. Ramezani, A. H., Hoseinzadeh, S., Bahari A. (2018) The effects of nitrogen on structure, morphology and electrical resistance of tantalum by ion implantation method. Journal of Inorganic and Organometallic Polymers and Materials, 28, pp. 847–853, doi: 10.1007/s10904-017-0769-4.
  46. Hoseinzadeh, S., Ghasemiasl, R., Bahari A. Ramezani, A. H. (2017) n-type WO3 semiconductor as a cathode electrochromic material for ECD devices. Journal of Materials Science: Materials in Electronics, 28, pp. 14446–14452, doi:10.1007/s10854-017-7306-7.
  47. Hoseinzadeh, S., Ghasemiasl, R., Bahari A. Ramezani, A. H. (2017) The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic colorationn efficiency and switching response. Journal of Materials Science: Materials in Electronics, 28, 14855–14863, doi: 10.1007/s10854-017-7357-9.
  48. Hoseinzadeh, S., Ramezani, A. H. (2019) Tantalum/nitrogen and n-type WO3 semiconductor/FTO structures as a cathode for the future of nanodevices. Journal of Nanostructure, 9, pp. 276–286, doi:10.22052/JNS.2019.02.010.
  49. Hoseinzadeh, S., Ramezani, A. H. (2019) Investigation of Ta/NII-WO3/FTO structures as a semiconductor for the future of nanodevices. Journal of Nanoelectronics and Optoelectronics, 14, pp. 1413–1419, doi: 10.1166/jno.2019.2564.
  50. Hoseinzadeh, S., Ramezani, A. H. (2018) Corrosion performance of Ta/Ni ions implanted with WO3/FTO, Journal of the Chinese Society of Mechanical Engineers, 39(5), pp 501–507.
  51. Ramezani, A. H., Hoseinzadeh, S., Ebrahiminejad, Z. H., Masoudi, S. F., Hashemizadeh A. (2020) Spin-polarized electron transfer in multilayers with different types of rough interfaces. Journal of Superconductivity and Novel Magnetism, doi: 10.1007/s10948-019-05335-x.

Full Text



© 2014-2019 Sumy State University.
Scientific journal "Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.