Mathematical Modeling of the Mechanical Characteristic of the Activated PTFE-Matrix Using the Method of Planning the Experiment | Journal of Engineering Sciences

Mathematical Modeling of the Mechanical Characteristic of the Activated PTFE-Matrix Using the Method of Planning the Experiment

Author(s): Bilous O. A.1, Hovorun T. P.1, Berladir K. V.1*, Vorobiov S. I.2, Simkulet V. V.3

Affilation(s):
1 Sumy State University, 2 Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Institute of Physics, P. J. Šafárik University in Košice, 2 Šrobárova St., 041 54, Košice, Slovakia;
3 Technical University of Košice, 1 Bayerova St., 080 01, Prešov, Slovakia

*Corresponding Author’s Address: [email protected]

Issue: Volume 5; Issue 1 (2018)

Dates:
Paper received: December 20, 2017
The final version of the paper received: April 30, 2018
Paper accepted online: May 5, 2018

Citation:
Bilous O. A., Hovorun T. P., Berladir K. V., Vorobiov S. I., Simkulet V. V. (2018). Mathematical modeling of the mechanical characteristic of the activated PTFE-matrix using the method of planning the experiment. Journal of Engineering Sciences, Vol. 5(1), pp. C1-C5, doi: 10.21272/jes.2018.5(1).c1.

DOI: 10.21272/jes.2018.5(1).c1

Research Area: MANUFACTURING ENGINEERING: Materials Science

Abstract.

In this paper, the influence of the parameters of the technological process of mechanical activation on the physical characteristics of the polytetrafluoroethylene (PTFE) matrix is investigated. The paper presents a mathematical model of the dependence of breaking strength on the time of activation and rotating speed of working organs of a mill. Mathematical modeling is performed by the method of orthogonal experiment planning. The result of the study was a mathematical relation that explains the connection between the technical characteristics of the process of manufacturing a fluoroplastic composite and the mechanical characteristics of the material. The statistical analysis of the experimental results is performed and the adequacy of the mathematical relations obtained is estimated. On the basis of the analysis of the obtained data, it can be concluded that the theoretical model obtained is adequate and suitable for performing the corresponding technological calculations. On the basis of the performed calculations, the conclusion is reached on the optimal technological mode of preparing the PTFE-matrix. The analysis shows that theoretical calculations confirm the experimental value of technological indicators under optimal operating conditions of the mill. Thus, the obtained dependence of breaking strength from the technological parameters of the activation process can be embedded in the algorithm for selecting the technological mode that ensures the output of products with specified quality indicators.

Keywords: polytetrafluoroethylene matrix, mechanical activation, mathematical modeling, breaking strength, parameters.

References:

  1. Smith, D. W., Iacono, S. T., & Iyer, S. S. (2014). Handbook of fluoropolymer science and technology. Hoboken, Wiley.
  2. Negrov, D. A., Putintsev, V. Yu., Peredel’skaya, O. A., Naumova, A. V. (2015). Tekhnologiya izgotovleniya detaley uzlov treniya iz polimernykh kompozitsionnykh materialov. Bulletin of YuUrGU, series “Mashinostroyeniye”, Vol. 15, Issue 2,
    13–19 [in Russian].
  3. Venkateswarlu, G., Sharada, R., & Bhagvanth Rao M. (2014). Polytetrafluoroethylene (PTFE) based composites. Journal of Chemical and Pharmaceutical Research, Vol. 6, Issue 10, 508–517.
  4. Budnik, O. A., Sviderskii, V. A., Budnik, A. F., Berladir, K. V., Rudenko, P. V. (2016). Composite material for chemical and petrochemical equipment friction assemblies. Chemical and Petroleum Engineering, Vol. 52, Issue 1, 63–68, doi: 10.1007/s10556-016-0149-x.
  5. Jordan, J. L., Siviour, C. R., Foley, J. R., & Brown, E. N. (2007). Compressive properties of extruded polytetrafluoroethylene. Polymer, Vol. 48, Issue 14, 4184–4195, doi: 10.1016/j.polymer.2007.05.038.
  6. Struk, V. A., Tsvetnikov, A. K., Antonov, A. S., et al. (2009). Mekhanokhimicheskiye aspekty tekhnologii formirovaniya i primeneniya ftoroplastovykh kompozitov. Izvestiya NAN Belarusi, Vol. 3, 28–35 [in Russian].
  7. Mohd, F. O., Akil, H. M., & Ahmad, Z. A. (2011). Measurement and prediction of compressive properties of polymers at high strain rate loading. Mater Des, Vol. 32, Issue 8–9, 4207–4215.
  8. Budnik, O. A., Budnik, A. F., Sviderskiy, V. A., Berladir, K. V., & Rudenko, P. V. (2016). Structural conformation of polytetrafluoroethylene composite material. Chemistry & Chemical Technology, Vol. 10, No. 2, 241–246.
  9. Bukhkalo, S. I., Ol’khovskaya, O. I., & Borkhovich, A. A. (2008). Otsenka kachestva vtorichnykh polimerov s pomoshch’yu matematicheskoy modeli. Íntegrovaní tekhnologíí̈ ta yenergozberezhennya, Vol. 2, 51–55 [in Russian].
  10. Shevchenko, S. A., Valivakhin, S. O., Hryhor’yev, O. L., & Stepanov, M. S. (2016). Matematychna modelʹ manzhetnykh ushchilʹnenʹ iz ftoroplasta dlya ahrehativ pnevmoavtomatyky raketnykh dvyhuniv. Visnyk NTU «KHPI». Seriya: Matematychne modelyuvannya v tekhnitsi ta tekhnolohiyakh, Vol. 6, Issue 1178, 124–143 [in Ukrainian].
  11. Nekouzadeh, A., Pryse, K. M., Elson, E. L., & Genin, G. M. (2007). A simplified approach to quasi-linear viscoelastic modeling. Journal of Biomechanics, Vol. 40, Issue 14, 3070–3078, doi: 1016/j.jbiomech.2007.03.019.
  12. Dreyper, N., & Smit, G. (2007). Prikladnoy regressionnyy analiz. Moscow : Vil’yams [in Russian].
  13. Meledina, T. V., & Danina, M. M. (2015). Metody planirovaniya i obrabotki rezul’tatov nauchnykh issledovaniy. Saint Petersburg, NIU ITMO [in Russian].

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU