Modeling of Innovation Research Clusters in the Field of Radioactive Waste Utilization | Journal of Engineering Sciences

Modeling of Innovation Research Clusters in the Field of Radioactive Waste Utilization

Author(s): Chernysh Ye.1*, Plyatsuk L.1, Azarov S.2, Tsutsumiuchi K.3, Kotova I.1

Affiliation(s): 
1 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Institute for Nuclear Research, National Academy of Sciences of Ukraine, 47, Nauky Ave., 03680, Kyiv, Ukraine;
3 Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.

*Corresponding Author’s Address: [email protected]

Issue: Volume 7, Issue 2 (2020)

Dates:
Paper received: July 5, 2020
The final version of the paper received: September 19, 2020
Paper accepted online: October 3, 2020

Citation:
Chernysh Ye., Plyatsuk L., Azarov S., Tsutsumiuchi K., Kotova I. (2020). Modeling of innovation research clusters in the field of radioactive waste utilization. Journal of Engineering Sciences, Vol. 7(2), pp. H1–H9, doi: 10.21272/jes.2020.7(2).h1

DOI: 10.21272/jes.2020.7(2).h1

Research Area:  CHEMICAL ENGINEERING: Environmental Protection

Abstract. The situation with the processing and disposal of radioactive waste, including the liquid phase, is not resolved. Many questions remain regarding the environmental safety of processes and the technological implementation of the most energy-efficient solutions. Thus, the article’s main attention is paid to theoretical studies of the development innovation directions of radioactive waste processing using the VOSviewer software tool. The clusters were formed under modeling directions of application of radiolysis for radioactive waste utilization: the red cluster includes research of radionuclide sorption processes and their concentration for radiolysis of liquid media; the green cluster concerns factors of influence on water radiolysis in hydrogen production; the yellow cluster includes research areas of natural processes related to radiolysis; the blue cluster is connected with mathematical modeling of radiolysis process with fuel production and engineering implementation and the purple cluster related to the processes of radioactive waste management and disposal as well as the application of radiolysis for this purpose. The cluster simulations of nanoparticle and radiolysis applications for radioactive waste treatment have resulted in a new energy recovery strategy. The development of new matrix materials in combination with nanoparticles for the agglomeration and concentration of radionuclides is a promising innovation method improving radiolysis under hydrogen production from radioactive waste.

Keywords: radioactive waste, nanoparticle, radiolysis, cluster simulations, software tool.

References:

  1. Onat, N., Bayar, H. (2010). The sustainability indicators of power production systems (Review). Renewable and Sustainable Energy Reviews, Vol. 14(9), pp. X3108–X3115.
  2. Duarte, G. T., Volkova, P. Y., Geras’kin, S. A. (2019). The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone. Environmental Pollution, Vol. 250, pp. 618–626.
  3. Tihonov, M. N. (2015). Anthology of the disaster at the Japanese nuclear power plant Fukushima-1. Health Risk Analysis, No. 1, pp. 82–102.
  4. Abdel Rahman, R. O., Ibrahium, H. A., Hung, Y.-T. (2011). Liquid radioactive wastes treatment: A review. Water, Vol. 3, pp. 551–565, doi: 10.3390/w3020551.
  5. Azarov, S. I., Vilenska, L. M., Korchevna, O. V. (1998). Radiolysis of water in “Sarcophagus” (Prepr. Academy of Sciences of the Ukraine Institute for Nuclear Research; KINR-98-5).
  6. Information Agency “Unian” (2019). Retrieved from https://www.unian.info/kiev/10621401-liquid-radioactive-waste-treatment-plant-launched-in-kyiv-region.html.
  7. Le Caer, S. (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, Vol. 3, pp. 235–253, doi: 10.3390/w3010235.
  8. Abedini, A., Bakar, A. A., Larki, F., Menon, P. S., Islam, M. S. (2016). Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Research Letters, Vol. 11(1), 287, doi: 10.1186/s11671-016-1500-z.
  9. Agayev, T. N., Garibov, A. A., Guseinov, V. I. (2017). Influence of gamma-radiation on the hydrogen yield at water radiolysis on the surface of nano-zirconium. Problems of Atomic Science and Technology, Vol. 5(111), pp. 27–30.
  10. Yousefi, N. (2014). Gamma-Radiolysis Kinetics of Liquid, Vapour and Supercritical Water. Ph.D. Thesis, Western University. Retrieved from https://ir.lib.uwo.ca/etd/2343.
  11. Dzaugis, M. E., Spivack, A. J., d’Hondt, S. (20105). A quantitative model of water radiolysis and chemical production rates near radionuclide-containing solids. Radiation Physics and Chemistry, Vol. 115, pp. 127–134.
  12. Duan, J., Ji, H., Xu, T., Pan, F., Liu, X., Liu, W., Zhao, D. (2021). Simultaneous adsorption of uranium(VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chemical Engineering Journal, Vol. 406, 126752.
  13. Noh, W., Kim, T. H., Lee, K.-W., Lee, T. S. (2020). Selective adsorption of sodium dodecylbenzenesulfonate from a Cs ion mixture by electrospun mesoporous silica nanofibers. Chemosphere, Vol. 259, 127391.
  14. Zhang, P., Wang, L., Du, K., Wang, S., Huang, Z., Yuan, L., Li, Z., Wang, H., Zheng, L., Chai, Z., Shi, W. (2020). Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, Vol. 396, 122731.
  15. Mousa, A. M., Abdel Aziz, O. A., al-Hagar, O. E. A., Gizawy, M. A., Allan, K. F., Attallah, M. F. (2020). Biosynthetic new composite material containing CuO nanoparticles produced by Aspergillus terreus for 47Sc separation of cancer theranostics application from irradiated Ca target. Applied Radiation and Isotopes, Vol. 166, 109389.
  16. Suchankova, P., Kukleva, E., Nykl, E., Nykl, P., Sakmar, M., Vlk, M., Kozempel, J. (2020). Hydroxyapatite and titanium dioxide nanoparticles: Radiolabelling and in vitro stability of prospective theranostic nanocarriers for223 ra and99m tc. Nanomaterials, Vol. 10(9), 1632.
  17. Ordonez, C., Watanabe, N., Kozaki, T. (2020). Migration of polyethylene glycol coated gold nanoparticles in surrogate natural barriers. Journal of Nuclear Science and Technology, Vol. 57(7), pp. 813–824.
  18. Abedini, A., Bakar, A. A., Larki, F., Menon, P. S., Islam, M. S., Shaari, S. (2016). Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Research Letters, 11(1), 287, doi: 10.1186/s11671-016-1500-z.
  19. Payne, T. E., Brendler, V., Ochs, M., Baeyens, B., Brown, P. L., Davis, J. A. (2013). Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposa. Environmental Modelling and Software, Vol. 42, pp. 143–156, doi: 1016/j.envsoft.2013.01.002.
  20. Norrfors, K. K., Marsac, R., Bouby, M., Heck, S., Wold, S., Lutzenkirchen, J., Schafer, T. (2016). Montmorillonite colloids: II. Colloidal size dependency on radionuclide adsorption. Applied Clay Science, Vol. 123, pp. 292–303.
  21. Runde, W., Conradson, S. D., Efurd, D. W., Lu, N.-P., Van Pelt, C. E., Tait, C. D. (2002). Solubility and sorption of redox-sensitive radionuclides (Np, Pu) in J-13 water from the Yucca Mountain site: comparison between experiment and theory. Applied Geochemistry, Vol. 17(6), pp. 837–853.
  22. Abdel Rahman, R. O., Ibrahium, H. A., Hung, Y.-T. (2011). Liquid radioactive wastes treatment: A review. Water, Vol. 3, pp. 551–565, doi: 10.3390/w3020551.
  23. Pipiska, M., Ballova, S., Fristak, V., Duriska, L., Hornik, M., Demcak, S., Holub, M., Soja, G. (2020). Assessment of pyrogenic carbonaceous materials for effective removal of radiocesium, Key Engineering Materials, Vol. 838, pp. 103–110, doi: 10.4028/www.scientific.net/KEM.838.103.
  24. Vellingiri, K., Kim, K.-H., Pournara, A., Deep, (2018). Towards high-efficiency sorptive capture of radionuclides in solution and gas. Progress in Materials Science, Vol. 94, pp. 1–67, doi: 10.1016/j.pmatsci.2018.01.002.
  25. Seino, S., Yamamoto, T. A., Fujimoto, R., Hashimoto, K., Katsura, M., Okuda, S., Okitsu, K. (2001). Enhancement of hydrogen evolution yield from water dispersing nanoparticles irradiated with gamma-ray. Journal of Nuclear Science and Technology, 38(8), pp. 633–636, doi: 10.1080/18811248.2001.9715076.
  26. Kojima, T., Takayanagi, K., Taniguchi, R., Okuda, Sh., Seino, S., Yamamoto, T. A. (2006). Hydrogen gas generation from the water by gamma-ray radiolysis with pre-irradiated silica nanoparticles dispersing. Journal of Nuclear Science and Technology, 2006, 43, pp. 1287–1288.
  27. Chernykh, Y. Y., Vereshchagina, T. A., Mazurova, E. V., Parfenov, V. A., Solovyev, L. A., Vereshchagin, S. N., Sharonova, O. M. (2019). Magnetic composite sorbents for trapping heavy metals from liquid waste and their immobilization in a mineral-like matrix, Journal of Siberian Federal University. Chemistry, Vol. 12(3), pp. 445–457, doi: 10.17516/1998-2836-0141.
  28. Agayev, T. N., Garibov, A. A., Guseinov, V. I. (2017). Influence of gamma-radiation on the hydrogen yield at water radiolysis on the surface of nano-zirconium. Problems of Atomic Science and Technology, Vol. 5(111), pp. 27–30.
  29. Agayev, T. N, Mansimov, Z. A., Melikova, S. Z. (2016). Water heterogeneous radiolysis in the presence of Radium silicate. Problems of Atomic Science and Technology, Vol. 4(104), pp. 26–31.
  30. Carrasco-Flores, A. E., La Vernea, A. J. (2007). Surface species produced in the radiolysis of zirconia nanoparticles. The Journal of Chemical Physics, Vol. 127, 234703, doi: 1063/1.2806164.
  31. Kumagai, Y., Kimura, A., Taguchi, M., Nagaishi, R., Yamagishi, I., Kimura, T. (2013). Hydrogen production in gamma radiolysis of the mixture of mordenite and seawater. Journal of Nuclear Science and Technology, Vol. 50(2), pp. 130–138, doi: 10.1080/00223131.2013.757453.
  32. Nagaishi, R., Morita, K., Yamagishi, I., Hino, R., Ogawa, T. (2014). Revaluation of hydrogen generation by water radiolysis in SDS vessels at TMI-2 accident. Proceedings of 2014 Nuclear Plant Chemistry Conference 2014 Sapporo (NPC 2014), 2471.
  33. Kursky, S., Kalygin, V. V. (2013). Radiolysis coolant and methods of explosion security in the boiling water reactors, Bulletin of Yuri Gagarin State Technical University of Saratov, Vol. 3(72), pp. 116–122.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU