Modern materials for automotive industry | Journal of Engineering Sciences

Modern materials for automotive industry

Author(s): Hovorun T. P.1, Berladir K. V.1*, Pererva V. I.1, Rudenko S. G.1, Martynov A. I.1

Affilation(s): 1Sumy State University, 2 Rymskogo-Korsakova St., 40007, Sumy, Ukraine

*Corresponding Author’s Address: [email protected]

Issue: Volume 4; Issue 2 (2017)

Dates:
Paper received: September 30, 2017
The final version of the paper received: December 2, 2017
Paper accepted online: December 4, 2017

Citation:
Hovorun T. P., Berladir K. V., Pererva V. I., Rudenko S. G., Martynov A. I. (2017). Modern materials for automotive industry. Journal of Engineering Sciences, Vol. 4(2), pp. F8-F18, doi: 10.21272/jes.2017.4(2).f8

DOI: 10.21272/jes.2017.4(2).f8

Research Area: Materials Science

Abstract: The car industry uses a tremendous number of materials to build cars, including iron, aluminum, steel, glass, rubber, petroleum products, copper, steel and others. These materials have evolved greatly over the decades, becoming more sophisticated, better built, and safer. They’ve changed as new automotive manufacturing technologies have emerged over the years, and they’re used in increasingly innovative ways. This article is devoted to systematization information on the introduction and application of modern materials in the automotive industry. Given both domestic and foreign sources of information, it follows that car manufacturers are constantly pushing to create the lightest cars possible to increase speed and power. Research and development into lightweight materials is essential for lowering their cost, increasing their ability to be recycled, enabling their integration into vehicles, and maximizing their fuel economy benefits. Light weighting without loss of strength and speed properties is the present, and the future, of the automotive manufacturing industry. It brings innovative materials to the frontline of design.

Keywords: steel, aluminum, aluminum alloys, aluminum matrix composites, polymer and composite materials, plastics, lightweight materials.

References:

  1. Shashank, M. (2016). Material Qualification in the Automotive Industry. Center for Automotive Research. Ann Arbor, pp. 1–24.
  2. Sharon, F. (2014). Additive Manufacturing Technology: Potential Implications for U.S. Manufacturing Competitiveness. Journal of International Commerce and Economics. Retrieved from http://www.usitc.gov/journals.
  3. Materials-for-ground-transportation. Retrieved from https://www.britannica.com/technology/materials-science/Materials-forground-transportation.
  4. Prokhorova, T. V., Perhemlyi, I. F., & Kolesnikov, V. O. (2017). Materialy ta tekhnolohiyi v avtomobil’niy promyslovosti [Materialsand Technologies in theAutomotiveIndustry]. Materials of the V International Scientific and Technical Internet Conference “Problems and Prospects for the Development of Automobile Transport”. Vinnytsya, Ukraine, рр. 105–112 [in Ukrainian].
  5. What Materials are Used to Lightweight Cars? (2017). Trevor English, February 8, Blog, automotive, lightweighting, material. Retrieved from http://manufacturinglounge.com/materials-used-lightweight-cars.
  6. Legkiye i prochnyyesinteticheskiyematerialy v avtomobilestroyenii [Lightweight and durable synthetic materials in the automotive industry]. Retrieved from http://100ls.ru/index.php/novosti/proizvodstvo/119-legkie-i-prochnye-sinteticheskie-materialy-vavtomobilestroenii [in Russian].
  7. Monteiro, W. A., Buso, S. J., & Silva, L. V. (2012). Application of Magnesium Alloys in Transport. New Features on Magnesium Alloys. Chapter 7. DOI: http://dx.doi.org/10.5772/48273.
  8. Steel Applications. Retrieved from https://www.thebalance.com/steel-applications-2340171.
  9. Kozlowski, M. (2012). Lightweight Plastic Materials. Thermoplastic Elastomers. Retrieved from http://www.intechopen.com/books/thermoplasticelastomers/lightweight-plastic-materials.
  10. Mavhunguа, S. T., Akinlabib, E. T., Onitirib, M. A., & Varachiaa, F. M. (2017) Aluminum Matrix Composites for Industrial Use: Advances and Trends. Procedia Manufacturing, Vol. 7, 178–182. DOI: https://doi.org/10.1016/j.promfg.2016.12.045.
  11. Das, S. (2000). The cost of automotive polymer composites: a review and assessment of doe’s lightweight materials composites research – ORNL, TM-2000, pp. 283.
  12. Top 5 Materials Used in Auto Manufacturing. Retrieved from https://auto.howstuffworks.com/under-the-hood/automanufacturing/5-materials-used-in-auto-manufacturing.
  13. Iz chego delayut kuzova avtomobiley? Retrieved from http://amastercar.ru/articles/body_of_car_3.shtml [in Russian].
  14. Kuzovnoye materialovedeniye [Body Material Science]. Retrieved from https://www.autocentre.ua/opyt/tehnologii/kuzovnoematerialovedenie-286800.html [in Russian].
  15. Automotive steels for safe and lightweight cars. Retrieved from https://www.ssab.com/products/industries/automotive.
  16. Ivanov, V. O., Karpus, V. Ye, Degtyarev, I. M., & Bohdan, V. R. (2015). Tekhnolohiya vyhotovlennya avtomobil’nykh detaley skladnoyi formy [Technology of manufacture of automotive details of composite form]. Zbirnyk naukovykh prats’ Natsional’noyi akademiyi Natsional’noyi hvardiyi Ukrayiny, No. 1 (25), 85–90.
  17. Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. SADHANA, Vol. 28, Parts 1–2, 319–334.
  18. Mityaev, A. A., Volchok, I. P., et al. (2014). Kompleksnoe modyfytsyrovanye vtorychnykh sylumynov [Complex modification of secondary silumines]. Nauka ta prohrestransportu. Bulletin of Dnipropetrovsk national university of railway transport, Vol. 54, No. 6, 87–96. DOI: 10.15802/stp2014/33180) [in Russian].
  19. Vakulenko, I. A., Nadezhdin, Y. L., et. al. (2013). Electric pulse treatment of welded joint of aluminium alloy. Nauka ta prohres transportu. Bulletin of Dnipropetrovsk national university of railway transport, Vol. 46, No. 4, 73–82. DOI: 10.15802/stp2014/33180.
  20. Pietrowski, S., Gumienny, G., Pisarek, B., & Wladysiak, R. (2004). Kontrola produkcji wysokojakosciowych stopow odlewniczych metoda ATD –Archiwum technologii maszyn i automatyzacji, Vol. 24, No. 3, 131–144 [in Poland].
  21. Volchok, I. P., & Mitiaiev, O. A. (2003). Modyfikator dlia aliuminiievykh splaviv [Modifier for aluminium alloys]. Patent UA, No. 2002108343.
  22. Volchok, I. P. Mitiaiev, O. A., Ostrovska, A. Ye., & Skuibida, O. L. (2009). Modyfikator aliuminiievykh splaviv [Modifier of aluminium alloys]. Patent UA, No. u200902454.
  23. Shyrokobokova, N. V., Mitiaiev, O. A., et al. (2012). Rafinuvalno-modyfikuvalnyi kompleks dlia aliuminiievykh splaviv [Refining and modifying complex for aluminium alloys]. Patent UA, No. u201112705.
  24. Belikov, S., Volchok, I., & Mityayev, O. (2006). The nanomodifier of aluminium alloys. Aims for future of engineering science, pp. 191–193.
  25. Volochko, А. Ɍ. (2015). Modifitsirovaniye evtekticheskikh i pervichnykh chastits kremniya v siluminakh. Perspektivy razvitiya [Modification of eutectic and primary silicon particles in silumin. Prospects for development]. Casting and metallurgy, Vol. 81, No. 4, 38–45 [in Russian].
  26. Telang, A. K., Rehman, A., Dixit, G., & Das, S. (2010). Alternate materials in automobile brake disc applications with emphasis on Al composites – a technical review. Journal of Engineering Research and Studies, Vol. 1, Issue 1, 35–46.
  27. Tian, X., Zhu, A., Wei, J., & Han, R. (2017). Preparation and Forming Technology of Particle Reinforced Aluminum Matrix Composites. Materials Science: Advanced Composite Materials, Vol. 1, Issue 1, 1–9.
  28. Mironova, E. V., Zatulovsky, A. S., Kosinskaya, A. V., & Zatulovsky, S. S. (2006). Lityye kompozitsionnyye materially na osnove alyuminiyevogo splava dlya avtomobilestroyeniya [Cast composite materials based on aluminium alloy for automotive industry]. Bulletin of Kharkov National Automobile and Highway University, No. 33, 20–22 [inRussian].
  29. Kalinina, N. E., Beloyartseva, V. P., & Kavats, O. A. (2006). Modifitsirovaniye liteynykh alyuminiyevykh splavov poroshkovymi kompozitsiyami [Modification of cast aluminum alloys by powder compositions]. Bulletin of Engine Building, No. 2, 193–195 [in Russian].
  30. Stetsenko, V. Yu., Rivkin, A. I., Gutev, A. P., & Konovalov, R. V. (2009). Modifitsirovaniye siluminom s melkokristallicheskimi alyuminiyevymi splavami [Modification of silumin with fine-crystalline aluminium alloys]. Bulletin of Gomel State Technical University named after P. O. Sukhoi, No. 1, 21–24 [inRussian].
  31. Meenakshi, S. U. & Mahamani, A. (2015). Development of Carbon Nanotube Reinforced Aluminum Matrix Composite Brake Drum for Automotive Applications. Research and Innovation in Carbon Nanotube-Based Composites. Retrieved fromhttp://www.academicpub.org/amsa.
  32. Canter, N. (2016). Light weight self-lubricating metal matrix composites. Tribology & Lubrication Technology, pp. 18–19.
  33. Timoshkov, P. N., Khrulkov, A. V., & Yazvenko, L. N. (2017). Kompozitsionnyye materialy v avtomobil’noy promyshlennosti [Composite materials in theautomotive industry]. Proceedings of VIAM, Vol. 54, No. 6, 61–68 [in Russian].
  34. Gribkov, A. A. (2013). Novyye materialy, primenyayemyye v avtomobil’noy promyshlennosti [New materials used in the automotive industry]. Materials of the international scientific and practical conference “Innovations in the automotive industry”, pp. 18–22 [in Russian].
  35. 10 tekhnologiy avtomobiley budushchego [10 Future Car Technologies]. Retrieved from http://www.lookatme.ru/mag/live/ futureresearch/197165-future-car-technologies [in Russian].

Full Text



© 2014-2024 Сумський державний університет
"Журнал інженерних наук"
ISSN 2312-2498 (друкований), ISSN 2414-9381 (онлайн).
Усі права захищені СумДУ