Modern Trends in the Mathematical Simulation of Pressure-Driven Membrane Processes | Journal of Engineering Sciences

Modern Trends in the Mathematical Simulation of Pressure-Driven Membrane Processes

Author(s): Huliienko S. V.1*, Korniienko Y. M.1, Gatilov K. O.2

Affiliation(s): 
1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Ave., 03056, Kyiv, Ukraine;
2 Archer Daniels Midland Company ADM Europoort B.V., 125, Elbeweg, 3198 LC, Rotterdam, Netherlands

*Corresponding Author’s Address: sergii.guliienko@gmail.com

Issue: Volume 7, Issue 1 (2020)

Dates:
Paper received: December 6, 2019
The final version of the paper received: March 19, 2020
Paper accepted online: April 2, 2020

Citation:
Huliienko S. V. Korniienko Y. M., Gatilov K. O. (2020). Modern trends in the mathematical simulation of pressure-driven membrane processes. Journal of Engineering Sciences, Vol. 7(1), pp. F1–F21, doi: 10.21272/jes.2020.7(1).f1

DOI: 10.21272/jes.2020.7(1).f1

Research Area:  CHEMICAL ENGINEERING: Processes in Machines and Devices

Abstract. The presented article is an attempt to evaluate the progress in the development of the mathematical simulation of the pressure-driven membrane processes. It was considered more than 170 articles devoted to the simulation of reverse osmosis, nanofiltration, ultrafiltration, and microfiltration and the others published between 2000 and 2010 years. Besides the conventional approaches, which include the irreversible thermodynamics, diffusion and pore flow (and models which consider the membrane surface charge for nanofiltration process), the application of the methods the computational fluid dynamics, artificial neural networks, optimization, and economic analysis have been considered. The main trends in this field have been pointed out, and the areas of using approaches under consideration have been determined. The technological problems which have been solved using the mentioned approaches have also been considered. Although the question of the concentration polarization has not been considered separately, it was defined that, in many cases, the sufficiently accurate model cannot be designed without considering this phenomenon. The findings allow evaluating more thoroughly the development of the simulation of pressure-driven membrane processes. Moreover, the review allows choosing the strategy of the simulation of the considered processes.

Keywords: membrane, simulation, model, reverse osmosis nanofiltration, ultrafiltration, microfiltration.

References:

  1. Soltanieh M., Gill W. (1981). Review of reverse osmosis membranes and transport models, Chemical Engineering Communications, 12, pp. 279-363, doi: 10.1080/00986448108910843.
  2. Williams M. (2003). A Review of Reverse Osmosis Theory. Available at http://docplayer.net/33542358-A-review-of-reverse-osmosis-theory-michael-e-williams-ph-d-p-e.html. (Acceded: 13.03.2019).
  3. Sobana S., Panda R. C. (2011). Review on modeling and control of desalination system using reverse osmosis, Reviews in Environmental Science and Bio/Technology, 10 (2), pp. 139–150, https://doi.org/10.1007/s11157-011-9233-z.
  4. Jarzynska M. (2005) Mechanistic equations for membrane substance transport are consistent with Kedem–Katchalsky equations, Journal of Membrane Science, 263, pp.162–163, https://doi.org/10.1016/j.memsci.2005.07.016.
  5. Koter S. (2005). The Kedem-Katchalsky equations and the sieve mechanism of membrane transport, Journal of Membrane Science, 246, pp. 109–111. https://doi.org/10.1016/j.memsci.2004.08.022.
  6. Kargol A. (2000.). Modified Kedem-Kathcalsky equations and their applications, Journal of Membrane Science, 174, pp. 43–53, https://doi.org/10.1016/S0376-7388(00)00367-7.
  7. Kargol M., Kargol A. (2003). Mechanistic equations for membrane substance transport and their identity with Kedem–Katchalsky equations, Biophysical Chemistry, 103, pp. 117–127, https://doi.org/10.1016/S0301-4622(02)00250-8.
  8. Slеzak A., Grzegorczyn S., Wasik J. (2004). Model equations for interactions of hydrated species in transmembrane transport” Desalination, 163, pp. 177-192, https://doi.org/10.1016/S0011-9164(04)90188-9.
  9. Pontié M., Dach H., Leparc J., Hafsid M., Lhassani A. (2008). Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification, Desalination, 221, pp. 174–191, https://doi.org/10.1016/j.desal.2007.01.075.
  10. Villafafila А., Mujtaba I.M. (2003). Fresh water bу reverse osmosis based desalination: simulation and optimisation, Desalination, 155, pp. 1-13, https://doi.org/10.1016/S0011-9164(03)00234-0.
  11. Hyung H., Kim J.-H. (2006). A mechanistic study on boron rejection by sea water reverse osmosis membranes, Journal of Membrane Science, 286, pp. 269–278, https://doi.org/10.1016/j.memsci.2006.09.043.
  12. Senthilmurugan S., Ahluwalia A., Gupta S. (2005). Modeling of а spiral-wound module and estimation of model parameters using numerical techniques, Desalination, 173, pp. 269-286,. https://doi.org/10.1016/j.desal.2004.08.034.
  13. Al-haj Ali M., Ajbar A., Ali E., Alhumaizi K. (2009) Modeling the transient behavior of an experimental reverse osmosis tubular membrane, Desalination, 245, pp. 194-204, https://doi.org/10.1016/j.desal.2008.06.019.
  14. Chatterjee A., Ahluwalia A., Senthilmurugan S., Gupta S. K. (2004). Modeling of a radial flow hollow fiber module and estimation of model parameters using numerical techniques, Journal of Membrane Science, 236, pp. 1–16, 2004. https://doi.org/10.1016/j.memsci.2004.01.006.
  15. Senthilmurugan S., Gupta S. (2006) Modeling of a radial flow hollow fiber module and estimation of model parameters for aqueous multi-component mixture using numerical techniques, Journal of Membrane Science, 279, pp. 466–478, https://doi.org/10.1016/j.memsci.2005.12.041.
  16. Mane P., Park P.-K., Hyung H., Brown J., Kim J.-H. (2009) Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes, Journal of Membrane Science, 338, pp. 119–127, https://doi.org/10.1016/j.memsci.2009.04.014.
  17. Jain S., Gupta S. K. (2004). Analysis of modified surface force pore flow model with concentration polarization and comparison with Spiegler–Kedem model in reverse osmosis systems, Journal of Membrane Science, 232, pp. 45–61, https://doi.org/10.1016/j.memsci.2003.11.021.
  18. Moresi M., Ceccantoni B., Lo Presti S. (2002) Modelling of ammonium fumarate recovery from model solutions by nanofiltration and reverse osmosis, Journal of Membrane Science, 209, pp. 405–420, https://doi.org/10.1016/S0376-7388(02)00330-7.
  19. Ahmad A.L., Chong M.F., Bhatia S. (2007) Mathematical modeling of multiple solutes system for reverse osmosis process in palm oil mill effluent (POME) treatment, Chemical Engineering Journal, 132, pp. 183–193, https://doi.org/10.1016/j.cej.2006.12.022.
  20. Yaroshchuk A. (2002) Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification, Journal of Membrane Science, 198, pp. 285–297, https://doi.org/10.1016/S0376-7388(01)00668-8.
  21. Bhanushali D., Kloos S., Kurth C., Bhattacharyya D. (2001) Performance of solvent-resistant membranes for non-aqueous systems: solvent permeation results and modeling, Journal of Membrane Science, 189, pp. 1–21, https://doi.org/10.1016/S0376-7388(01)00356-8.
  22. Sagne C., Fargues C., Broyart B., Lameloise M.-L., Decloux M. (2009). Modeling permeation of volatile organic molecules through reverse osmosis spiral-wound membranes, Journal of Membrane Science, 330, pp. 40–50,. https://doi.org/10.1016/j.memsci.2008.12.038.
  23. Avlonitis S. A., Pappas M., Moutesidis K. (2007) A unified model for the detailed investigation of membrane modules and RO plants performance, Desalination, 203, pp. 218–228, https://doi.org/doi/10.1016/j.desal.2006.04.009.
  24. Kaghazchi T., Mehri M., Ravanchi M. T., Kargari A. (2010). A mathematical modeling of two industrial seawater desalination plants in the Persian Gulf region, Desalination, 252, pp. 135–142, https://doi.org/doi/10.1016/j.desal.2009.10.012.
  25. H.-J., Hwang T.-M., Lee S. (2009) A simplified simulation model of RO systems for seawater desalination, Desalination, 238, pp. 128-139,. https://doi.org/10.1016/j.desal.2008.01.043.
  26. Zhao Y., Taylor J., Chellam S. (2005) Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, Journal of Membrane Science, 263, pp. 38–46, https://doi.org/10.1016/j.desal.2008.01.043.
  27. Yaroshchuk A. (2010)/ Influence of osmosis on the diffusion from concentrated solutions through composite/asymmetric membranes: Theoretical analysis, Journal of Membrane Science, 355, pp. 98–103, 2010. https://doi.org/10.1016/j.memsci.2010.03.013.
  28. Mehdizadeh H., Molaiee-Nejad Kh., Chong Y.C. (2005). Modeling of mass transport of aqueous solutions of multi-solute organics through reverse osmosis membranes in case of solute–membrane affinity Part 1. Model development and simulation, Journal of Membrane Science, 267, pp. 27–40, https://doi.org/10.1016/j.memsci.2005.03.059.
  29. Kumano A, Sekino M., Matsui Y., Fujiwara N., Matsuyama H. (2008) Study of mass transfer characteristics for a hollow fiber reverse osmosis module, Journal of Membrane Science, 324, pp. 136–141, https://doi.org//10.1016/j.memsci.2008.07.011.
  30. Weissbrodt J., Manthey M., Ditgens B., Laufenberg G, Kunz B. (2001) Separation of aqueous organic multi-component solutions bу reverse osmosis – development of а mass transfer model, Desalination, 133, pp. 65-74, https://doi.org/10.1016/S0011-9164(01)00083-2.
  31. Sreenivas K., Ragesh P., DasGupta S., De S. (2002). Modeling of cross-flow osmotic pressure controlled membrane separation processes under turbulent flow conditions, Journal of Membrane Science, 201, pp. 203–212, https://doi.org/10.1016/S0376-7388(01)00730-X.
  32. Koutsou C.P., Yiantsios S.G., Karabelas A.J. (2004). Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters, Journal of Membrane Science, 231, pp. 81–90,. https://doi.org/10.1016/j.memsci.2003.11.005.
  33. Ghidossi R., Veyret D., Moulin P. (2006). Computational fluid dynamics applied to membranes: State of the art and opportunities, Chemical Engineering and Processing, 45, pp. 437–454, https://doi.org/10.1016/j.cep.2005.11.002.
  34. Ahmad A.L., Lau K.K. (2006). Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel, Journal of Membrane Science, 286, pp. 77–92, https://doi.org/10.1016/j.memsci.2006.09.018.
  35. Koutsou C.P., Yiantsios S.G., Karabelas A.J. (2009). A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number, Journal of Membrane Science, 326, pp. 234–251, https://doi.org/10.1016/j.memsci.2008.10.007.
  36. Lau K.K., Abu Bakar M.Z., Ahmad A.L., Murugesan T. (2009). Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel, Journal of Membrane Science, 343, pp. 16–33, https://doi.org/10.1016/j.memsci.2009.07.001.
  37. Li Y.-L., Tung K.-L. (2004). CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions, Desalination, 233, pp. 351–358, https://doi.org/10.1016/j.desal.2007.09.061.
  38. Shakaib M., Hasani S.M.F., Mahmood M. (2007) Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling, Journal of Membrane Science, 297, pp. 74–89, https://doi.org/10.1016/j.memsci.2007.03.010.
  39. Ranade V., Kumar A. (2006) Fluid dynamics of spacer filled rectangular and curvilinear channels, Journal of Membrane Science, 271, pp. 1–15, https://doi.org/10.1016/j.memsci.2005.07.013.
  40. Alexiadis A., Wiley D.E., Vishnoi A., Lee R.H.K., D.F. Fletcher, Bao J. (2007) CFD modelling of reverse osmosis membrane flow and validation with experimental results, Desalination, 217, pp. 242–250, 2007. https://doi.org/10.1016/j.desal.2007.02.014.
  41. Fimbres-Weihs G.A., Wiley D.E. (2007) Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow, Journal of Membrane Science, 306, pp. 228–243, https://doi.org/10.1016/j.memsci.2007.08.043.
  42. Li F., Meindersma W., de Haan A.B., Reith T. (2002). Optimization of commercial net spacers in spiral wound membrane modules, Journal of Membrane Science, 208 pp. 289–302, https://doi.org/10.1016/S0376-7388(02)00307-1.
  43. Li F., Meindersma W., de Haan A.B., Reith T. (2004). Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers, Journal of Membrane Science, 232, pp. 19–30, 2004. https://doi.org/10.1016/j.memsci.2003.11.015.
  44. Schwinge J., Wiley D.E., Fletcher D.F. (2002). А CFD study of unsteady flow in naпow spacer-filled channels for spiral-wound membrane modules, Desalination, 146, pp. 195-201, https://doi.org/10.1016/S0011-9164(02)00470-8.
  45. Wiley D., Fletcher D. (2003). Techniques for computational fluid dynamics modelling of flow in membrane channels, Journal of Membrane Science, 211, pp. 127–137,. https://doi.org/10.1016/S0376-7388(02)00412-X.
  46. Ma S., Song L. (2006). Numerical study on permeate flux enhancement by spacers in a crossflow reverse osmosis channel, Journal of Membrane Science, 284, pp. 102–109,. https://doi.org/10.1016/j.memsci.2006.07.022.
  47. Miyatake O., Tagawa K. (2001). Numerical and experimental analyses for RO desalination systems using а static pressure head, Desalination, 136, pp. 233-242, https://doi.org/10.1016/S0011-9164(01)00186-2.
  48. Guo Y., Shi Y., Moncur J., Lee Y. T., Kime K. W., Kim A. S. (2010). Analysis of full-scale membrane filtration processes using econophysics and econometrics, Journal of Membrane Science, 365, pp. 170–179, https://doi.org/10.1016/j.memsci.2010.09.009.
  49. Lee G.L., Lee Y.S., Jeon J.J., Lee S., Yang D.R., Kim I.S., Kim J.H. (2009). Artificial neural network model for optimizing operation of seawater reverse osmosis desalination plant, Desalination, 247, pp. 180-189, https://doi.org/10.1016/j.desal.2008.12.023.
  50. Libotean D., Giralt J., Giralt F., Rallo R., Wolfe T., Cohen Y. (2009). Neural network approach for modeling the performance of reverse osmosis membrane desalting, Journal of Membrane Science, 326, pp. 408–419,. https://doi.org/10.1016/j.memsci.2008.10.028
  51. Al-haj Ali M., Ajbar A., Ali E., Alhumaizi K. (2010). Robust model-based control of a tubular reverse-osmosis desalination unit, Desalination, 255, pp. 129–136, https://doi.org/10.1016/j.desal.2010.01.003.
  52. Gotor A., De la Nuez Pestana I., Espinoza C. A. (2003). Optimization of RO desalination systems powered by renewable energies, Desalination, 156, p. 351, https://doi.org/10.1016/S0011-9164(03)00366-7.
  53. Zilouchian A., Jafar M. (2001). Automation and process control of reverse osmosis plants using soft computing methodologies, Desalination, 135, pp. 51-59, https://doi.org/10.1016/S0011-9164(01)00138-2.
  54. Gasmi A., Belgaieb J., Hajji N. (2010). Technico-economic study of an industrial reverse osmosis desalination unit, Desalination, 261, pp. 175–180, https://doi.org/10.1016/j.desal.2010.04.060.
  55. Manth T., Gabor M., Oklejas E. (2003). Minimizing RO energy consumption under variable conditions of operation, Desalination, 157, pp. 9-21, https://doi.org/10.1016/S0011-9164(03)00377-1.
  56. Calì G., Fois E., Lallai A., Mura G. (2008). Optimal design of a hybrid RO/MSF desalination system in a non-OPEC country, Desalination, 228, pp. 114–127, https://doi.org/10.1016/j.desal.2007.08.012.
  57. Glueckstem P., Priel M. (2003). Optimization of boron removal in old and new SWRO systems, Desalination, 156, pp 219-228, https://doi.org/10.1016/S0011-9164(03)00344-8.
  58. Helal A.M., El-Nashar A.M., Al-Katheeri E., Al-Malek S. (2003). Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms”, Desalination, 154, pp. 43-66, https://doi.org/10.1016/S0011-9164(03)00207-8.
  59. Kim Y.M., Kim S.J., Kim Y.S., Lee S., Kim I.S., Kim J.H. (2009). Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network, Desalination, 238, pp. 312-332, https://doi.org/10.1016/j.desal.2008.10.004.
  60. Wilf M., Klinko K. (2001). Optimization of seawater RO systems design, Desalination, 138, pp. 299–306,. https://doi.org/10.1016/S0011-9164(01)00278-8.
  61. Helal A.M., El-Nashar A.M., Al-Katheeri E.S., Al-Malek S.A. (2004). Optimal design of hybrid RO/MSF desalination plants Part II: Results and discussion, Desalination, 160, pp. 13-27, https://doi.org/10.1016/S0011-9164(04)90014-8.
  62. Chilyumova E., Thöming J. (2007). Dynamic simulation of rinsing and regeneration networks based on high pressure RO, Desalination, 207, pp. 45–58, https://doi.org/10.1016/j.desal.2006.07.004.
  63. Roth Е., В., Accary А., Thomas G. (2000). Modelling of stimulus response experiments in the feed channel of spiral-wound reverse osmosis membranes, Desalination, 127, pp. 69-77, https://doi.org/10.1016/S0011-9164(99)00193-9.
  64. Khayet M., Essalhi M., Armenta-Déu C., Cojocaru C., Hilal N. (2010). Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology, Desalination, 261, pp. 284–292, https://doi.org/10.1016/j.desal.2010.04.010.
  65. Jamal K., Khan M.A., Kamil M. (2004). Mathematical modelling of reverse osmosis systems, Dessalination, 160, pp. 29-42, https://doi.org/10.1016/S0011-9164(04)90015-X.
  66. Stover R. (2008). SWRO process simulator, Desalination, 221, pp. 126–135, https://doi.org/10.1016/j.desal.2007.02.049.
  67. Peng W., Escobar I., White D. (2004). Effects of water chemistries and properties of membrane on the performance and fouling – a model development study, Journal of Membrane Science, 238, pp. 33–46, https://doi.org/10.1016/j.memsci.2004.02.035.
  68. Avlonitis S.A., Kouroumbas K., Vlachakis N. (2003). Energy consumption and membrane replacement cost for seawater RO desalination plants, Desalination, 157, pp. 151-158, https://doi.org/10.1016/S0011-9164(03)00395-3.
  69. Nafey A.S., Sharaf M.A , García-Rodríguez L. (2010). Thermo-economic analysis of a combined solar organic Rankine cycle-reverse osmosis desalination process with different energy recovery configurations, Desalination, 261, 138–147, https://doi.org/10.1016/j.desal.2010.05.017.
  70. Park C., Park P.-K., Manec P., Hyungc H., Gandhi V., Kim S.-H., Kim J.-H. (2010). Stochastic cost estimation approach for full-scale reverse osmosis desalination plants, Journal of Membrane Science, 364, pp. 52–64, https://doi.org/10.1016/j.memsci.2010.07.055.
  71. Majali F., Ettouney H., Abdel-Jabbar N., Qiblawey H. (2008). Design and operating characteristics of pilot scale reverse osmosis plants, Desalination, 222, pp. 441–450, https://doi.org/10.1016/j.desal.2007.01.169.
  72. van Gauwbergen D., Baeyens J. (2001). Modelling and scale-up of reverse osmosis separation, Desalination, 139, p. 275, https://doi.org/10.1016/S0011-9164(01)00319-8.
  73. Cheddie D., Maharajh A., Ramkhalawan A., Persad P. (2010). Transient modeling of wave powered reverse osmosis, Desalination, 260, рр. 153–160, https://doi.org/10.1016/j.desal.2010.04.048.
  74. Zhou W., Song L., Guan T. K. (2006). A numerical study on concentration polarization and system performance of spiral wound RO membrane modules, Journal of Membrane Science, 271, pp. 38–46, https://doi.org/10.1016/j.memsci.2005.07.007.
  75. Ramon G., Agnon Y., Dosoretz C. (2010). Dynamics of an osmotic backwash cycle, Journal of Membrane Science, 364, pp. 157–166, https://doi.org/10.1016/j.memsci.2010.08.008.
  76. Ahmad A.L., Chong M.F., Bhatia S. (2005). Mathematical modeling and simulation of the multiple solutes system for nanofiltration process, Journal of Membrane Science, 253, pp. 103–115, https://doi.org/10.1016/j.memsci.2005.01.005.
  77. Kovács Z., Discacciati M., Samhaber W. (2009). Modeling of batch and semi-batch membrane filtration processes, Journal of Membrane Science, 327, pp. 164–173,. https://doi.org/10.1016/j.memsci.2008.11.024.
  78. Kovács Z., Discacciati M., Samhaber W. (2009). Modeling of amino acid nanofiltration by irreversible thermodynamics, Journal of Membrane Science, 332, 38–49, https://doi.org/10.1016/j.memsci.2009.01.034.
  79. Al-Zoubi H., Hilal N., Darwish N.A., Mohammad A.W. (2007). Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler–Kedem model, Desalination, 206, pp. 42–60, https://doi.org/10.1016/j.desal.2006.02.060.
  80. Ballet G. T., Gzara L., Hafiane A., Dhahbi M. (2004). Transport coefficients and cadmium salt rejection in nanofiltration membrane, Desalination, 167, pp. 369-376, https://doi.org/10.1016/j.desal.2004.06.148.
  81. Mandale S., Jones M. (2010). Membrane transport theory and the interactions between electrolytes and non-electrolytes, Desalination, 252, pp. 17–26, https://doi.org/10.1016/j.desal.2009.11.007.
  82. Hassan A.R., Ali N., Abdull N., Ismail A.F. (2007). A theoretical approach on membrane characterization: the deduction of fine structural details of asymmetric nanofiltration membranes, Desalination, 206, pp. 107–126, https://doi.org/10.1016/j.desal.2006.06.008.
  83. Ismail A.F., Hassan A.R. (2004). The deduction of fine structural details of asymmetric nanofiltration membranes using theoretical models, Journal of Membrane Science, 231, pp. 25–36, https://doi.org/10.1016/j.memsci.2003.10.024.
  84. Dijkstra M.F.J., Bach S., Ebert K. (2006). A transport model for organophilic nanofiltration, Journal of Membrane Science, 286, pp. 60–68, https://doi.org/10.1016/j.memsci.2006.09.012.
  85. Drews A., Klahm T., Red B, Saygili M., Baumgarten G., Kraume M. (2003). Nanofiltration of CIP waters from iodine X-ray contrast media production: process design and modelling, Desalination, 159, pp. 119-129, https://doi.org/10.1016/S0011-9164(03)90064-6.
  86. Das C., De S.(2009). Steady state modeling for membrane separation of pretreated liming effluent under cross-flow mode, Journal of Membrane Science, 338, pp. 175–181, https://doi.org/10.1016/j.memsci.2009.04.029.
  87. Noronha M., Mavrov V., Chmiel H. (2002). Simulation model for optimisation of two-stage membrane filtration plants—minimising the specific costs of power consumption, Journal of Membrane Science, 202, pp. 217–232, https://doi.org/10.1016/S0376-7388(01)00791-8.
  88. Darvishmanesh S., Buekenhoudt A., Degrève J., Van der Bruggen B. (2009). General model for prediction of solvent permeation through organic and inorganic solvent resistant nanofiltration membranes, Journal of Membrane Science, 334, pp. 43–49, https://doi.org/10.1016/j.memsci.2009.02.013.
  89. Verliefde A.R.D., Cornelissen E.R., Heijman S.G.J., Verberk J.Q.J.C., Amy G.L., Van der Bruggen B., van Dijk J.C. (2009). Construction and validation of a full-scale model for rejection of organic micropollutants by NF membranes, Journal of Membrane Science, 339, pp. 10–20. https://doi.org/10.1016/j.memsci.2009.03.038
  90. Mattaraj S., Jarusutthirak C., Jiraratananon R. (2008). A combined osmotic pressure and cake filtration model for crossflow nanofiltration of natural organic matter, Journal of Membrane Science, 322, pp. 475–483. https://doi.org/10.1016/j.memsci.2008.05.049.
  91. Chaabane T., Taha S., Taleb Ahmed M., Maachi R., Dorange G. (2007). Retention modelling of the bivalent cations in crossflow nanofiltration investigation in the porous models, Desalination, 204, pp. 359–367, https://doi.org/10.1016/j.desal.2006.02.040.
  92. Mohammad A. W., Takriff M.S. (2003). Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes, Desalination, 157, pp. 105 – 111, https://doi.org/10.1016/S0011-9164(03)00389-8.
  93. Szymczyk A., Lanteri Y., Fievet P. (2009). Modelling the transport of asymmetric electrolytes through nanofiltration membranes, Desalination, 245, pp. 396–407, https://doi.org/10.1016/j.desal.2009.02.003.
  94. Bandini S., Vezzani D. (2003). Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chemical Engineering Science, 58 pp. 3303 – 3326. https://doi.org/10.1016/S0009-2509(03)00212-4.
  95. Bason S., Freger V. (2010). Phenomenological analysis of transport of mono- and divalent ions in nanofiltration, Journal of Membrane Science, 360, pp. 389–396, https://doi.org/10.1016/j.memsci.2010.05.037.
  96. Mohammad A.W., Hilal N., Al-Zoubi H., Darwish N.A., Ali N. (2007). Modelling the effects of nanofiltration membrane properties on system cost assessment for desalination applications, Desalination, 206, pp. 215–225, https://doi.org/10.1016/j.desal.2006.02.068.
  97. Yaroshchuk A. (2001). Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion, Separation and Purification Technology, 22-23, pp.143–158, https://doi.org/10.1016/S1383-5866(00)00159-3.
  98. Garcia-Aleman J., Dickson J. M. (2004) Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions, Journal of Membrane Science, 235, pp. 1–13, https://doi.org/10.1016/j.memsci.2003.11.023.
  99. Braeken L., Bettens B., Boussu K., Van der Meeren P., Cocquyt J., J. Vermant, Van der Bruggen B. (2006) Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration, Journal of Membrane Science, 279 pp. 311–319, https://doi.org/10.1016/j.memsci.2005.12.024.
  100. Hilal N., A1-Zoubi H., Darwish N.A., Mohammad A.W., Abu Arabi M. (2004). A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy, Desalination, 170, pp. 281-308, https://doi.org/10.1016/j.desal.2004.01.007.
  101. Bowen W. R., Cassey B., Jones P., Oatley D. L. (2004). Modelling the performance of membrane nanofiltration—application to an industrially relevant separation, Journal of Membrane Science, 242, pp. 211–220, https://doi.org/10.1016/j.memsci.2004.04.028.
  102. Chaabane T., Taha S., Cabon J., Dorange G., Maachi R. (2002). Dynamic modeling of mass transfer through a nanofiltration membrane using calcium salt in drinking water, Desalination, 152, pp. 275-280, 2002. https://doi.org/10.1016/S0011-9164(02)01074-3.
  103. Chaabane T., Taha S., Taleb Ahmed M., Maachi R., Dorange G. (2007). Coupled model of film theory and the Nernst–Planck equation in nanofiltration, Desalination, 206, pp. 424–432, https://doi.org/10.1016/j.desal.2006.03.577.
  104. Garba Y., Taha S., Gondrexon N., Cabon J., Dorange G. (2000). Mechanisms involved in cadmium salts transport through a nanofiltration membrane: characterization and distribution, Journal of Membrane Science, 168, pp.135–141, https://doi.org/10.1016/S0376-7388(99)00314-2.
  105. Gomes S., Cavaco S. A., Quina M. J., Gando-Ferreira L. M. (2010) Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis, Desalination, 254, pp. 80–89, 2010. https://doi.org/10.1016/j.desal.2009.12.010.
  106. Mehiguene К., Taha S., Gondrexon N., Cabon J., Dorange G. (2000). Copper transfer modeling through a nanofiltration membrane in the case of temary aqueous solution, Desalination, 127, pp135-143,. https://doi.org/10.1016/S0011-9164(99)00198-8.
  107. Palmeri J., Sandeaux J., Sandeaux R., Lefebvre Х., David Р., Guizard С., Amblard Р., Diaz J.-F., Lamaze В. (2002). Modeling of multi-electrolyte transport in charged ceramic and organic nanofilters using the computer simulation program NanoFlux, Desalination, 147, pp. 231-236, https://doi.org/10.1016/S0011-9164(02)00541-6.
  108. Wesolowska К., Koter S., Bodzek M. (2004). Modelling of nanofiltration in softening water, Desalination, 162, pp. 137-151,. https://doi.org/10.1016/S0011-9164(04)00037-2.
  109. Cavaco Morao A.I., Szymczyc A., Fievet P., Brites Alves A.M. (2008). Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process, Journal of Membrane Science, 322, pp. 320-330, https://doi.org/10.1016/j.memsci.2008.06.003.
  110. Wendler В., Goers В., Wozny G. (2002). Nanofiltration of solutions containing surfactants – prediction of flux decline and modelling of mass transfer, Desalination, 147, pp. 217–221, https://doi.org/10.1016/S0011-9164(02)00537-4.
  111. Noordman T.R., Wesselingh J.A. (2002). Transport of large molecules through membranes with narrow pores The Maxwell–Stefan description combined with hydrodynamic theory, Journal of Membrane Science, 210, pp. 227–243, https://doi.org/10.1016/S0376-7388(02)00351-4.
  112. Pereira A.M., Rooze J., Timmer M., Kreurentjes J. (2006). An analysis of multi-component mass transfer in solvent nanofiltration, Desalination, 199, pp. 37-38, https://doi.org/10.1016/j.desal.2006.03.138.
  113. Straatsma J., Bargeman G., van der Horst H.C., Wesselingh J.A. (2002). Can nanofiltration be fully predicted by a model?, Journal of Membrane Science, 198, pp. 273–284, https://doi.org/10.1016/S0376-7388(01)00669-X.
  114. de Lint W.D.S., Benes N. E. (2004). Predictive charge-regulation transport model for nanofiltration from the theory of irreversible processes, Journal of Membrane Science, 243, pp. 365-377, https://doi.org/10.1016/j.memsci.2004.06.041.
  115. de Pinto M.N., Semiao V., Geraldes V. (2002). Integrated modeling of transport processes in fluid/nanofiltration membrane systems, Journal of Membrane Science, 206, pp. 189–200, https://doi.org/10.1016/S0376-7388(01)00761-X.
  116. Geraldes V., Semiao V., de Pinho M. N. (2001). Flow and mass transfer modelling of nanofiltration, Journal of Membrane Science, 191, pp. 109–128, https://doi.org/10.1016/S0376-7388(01)00458-6.
  117. Geraldes V., Semiao V., de Pinho M. N. (2002). The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall, Chemical Engineering Science, 57, pp. 735 – 748, https://doi.org/10.1016/S0009-2509(01)00441-9.
  118. Bowen W.R., Jones M.G., Welfoot J.S., Yousef H.N.S. (2000). Predicting salt rejections at nanofiltration membranes using artificial neural networks, Desalination, 129, pp. 147-162, https://doi.org/10.1016/S0011-9164(00)00057-6.
  119. Yangali-Quintanilla V., Verliefde A., Kim T.-U., Sadmani A., Kennedy M., Amy G. (2009). Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes, Journal of Membrane Science, 342, pp. 251–262, https://doi.org/10.1016/j.memsci.2009.06.048.
  120. Kovács Z., Discacciati M., Samhaber W. (2008). Numerical simulation and optimization of multi-step batch membrane processes, Journal of Membrane Science, 324, pp. 50–58, https://doi.org/10.1016/j.memsci.2008.06.060.
  121. Bader M.S.H. (2006). Nanofiltration for oil-fields water injection operations: analysis of osmotic pressure and scale tendency, Desalination, 201, pp.114–120, https://doi.org/10.1016/j.desal.2005.09.041.
  122. Elazhar F., Tahaikt M., Achatei A., Elmidaoui F., Taky M., El Hannouni F., Laaziz I., Jariri S., El Amrani M., Elmidaoui A. (2009). Economical evaluation of the fluoride removal by nanofiltration, Desalination, 249, pp.154–157, https://doi.org/10.1016/j.desal.2009.06.017.
  123. Shaalan H.F., Sorour М.Н., Tewflk S.R. (2001). Simulation and optimization of а membrane system for chromium recovery from tanning wastes, Desalination, 141, pp. 315-324, https://doi.org/10.1016/S0011-9164(01)85008-6.
  124. Iaquinta M., Stoller M., Merli C. (2009). Optimization of a nanofiltration membrane process for tomato industry wastewater effluent treatment, Desalination, 245, pp. 314–320, https://doi.org/10.1016/j.desal.2008.05.028.
  125. Yaroshchuk A.E. (2000) Optimal charged membranes for the pressure-driven separations of ions of different mobilities: theoretical analysis, Journal of Membrane Science, 167, pp. 149–161, https://doi.org/10.1016/S0376-7388(99)00280-X.
  126. Bowen W. R., Welfoot J. S. (2002). Predictive modelling of nanofiltration: membrane specification and process optimisation, Desalination, 147, pp. 197-203, https://doi.org/10.1016/S0011-9164(02)00534-9.
  127. González-Munoz M.J., Parajó J.C. (2010). Diafiltration of Eucalyptus wood autohydrolysis liquors: Mathematical modeling, Journal of Membrane Science, 346 pp. 98–104, https://doi.org/10.1016/j.memsci.2009.09.023.
  128. Koter S., Koter I. (2006). Theoretical analysis of the performance of composite membrane consisting of the catalytic and nanofiltration layers, Journal of Membrane Science, 280, pp. 65–72, https://doi.org/10.1016/j.memsci.2006.01.005.
  129. Chilyumova E., Thöming J. (2008). Nanofiltration of bivalent nickel cations — model parameter determination and process simulation, Desalination, 224, pp. 12–17, https://doi.org/10.1016/j.desal.2007.04.072.
  130. Madaeni S.S., Salehi E. (2009). A new adsorption–transport and porosity combined model for passage of cations through nanofiltration membrane, Journal of Membrane Science, 333, pp. 100–109,. https://doi.org/10.1016/j.memsci.2009.02.006.
  131. Geens J., Van der Bruggen B., Vandecasteele C. (2006). Transport model for solvent permeation through nanofiltration membranes, Separation and Purification Technology, 48, рр. 255–263, https://doi.org/10.1016/j.seppur.2005.07.032.
  132. Geens J., Boussu K., Vandecasteele C., Van der Bruggen B. (2006). Modelling of solute transport in non-aqueous nanofiltration, Journal of Membrane Science, 281, pp. 139–148, https://doi.org/10.1016/j.memsci.2006.03.028.
  133. Lee S., Amy G., Cho J. (2004). Applicability of Sherwood correlations for natural organic matter (NOM) transport in nanofiltration (NF) membranes, Journal of Membrane Science, 240 pp. 49–65, https://doi.org/10.1016/j.memsci.2004.04.011.
  134. Machado D., Hasson D., Semiat R. (2000). Effect of solvent properties on permeate flow through nanofiltration membranes Part II. Transport model, Journal of Membrane Science, 166, pp. 63–69, https://doi.org/10.1016/S0376-7388(99)00251-3.
  135. Wang D.-X., Wu L., Liao Z.-D., Wang X.-L., Tomi Y., Ando M., Shintani T. (2006). Modeling the separation performance of nanofiltration membranes for the mixed salts solution with Mg2+ and Ca2+, Journal of Membrane Science, 284, pp. 384–392, https://doi.org/10.1016/j.memsci.2006.08.004.
  136. Morão A., de Amorim M. T. P., Lopes A., Escobar I., Queiroz J. A. (2008). Characterisation of ultrafiltration and nanofiltration membranes from rejections of neutral reference solutes using a model of asymmetric pores, Journal of Membrane Science, 319, pp. 64–75, https://doi.org/10.1016/j.memsci.2008.03.019.
  137. Yaroshchuk A. (2004). The role of imperfections in the solute transfer in nanofiltration, Journal of Membrane Science, 239, pp. 9–15, https://doi.org/10.1016/j.memsci.2004.02.014.
  138. Bandini S. (2005). Modelling the mechanism of charge formation in NF membranes: Theory and application, Journal of Membrane Science, 264, pp. 75–86, https://doi.org/10.1016/j.memsci.2005.03.055.
  139. Shang W.-J., Wang X.-L., Yu Y.-X. (2006). Theoretical calculation on the membrane potential of charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions, Journal of Membrane Science, 285, pp. 362–375, https://doi.org/10.1016/j.memsci.2006.09.005.
  140. Katsikaris K., Boukouvalas C., Magoulas K. (2005). Simulation of ultrafiltration process and application to pilot tests, Desalination, 171, pp. 1-11, https://doi.org/10.1016/j.desal.2004.02.103.
  141. Wang Y., Rodgers V.G.J. (2008). Free-solvent model shows osmotic pressure is the dominant factor in limiting flux during protein ultrafiltration, Journal of Membrane Science, 320, pp. 335–343, https://doi.org/10.1016/j.memsci.2008.04.014.
  142. Polyakov Y. (2006). Deadend outside-in hollow fiber membrane filter: Mathematical model, Journal of Membrane Science, 279, pp. 615–624, 2006. https://doi.org/10.1016/j.memsci.2005.12.056.
  143. Cabassud M., Delgrange-Vincentb N., Cabassud C., Durand-Bourlier L., Lainé J.M. (2002). Neural networks: a tool to improve UF plant productivity, Desalination, 145 pp. 223-231, https://doi.org/10.1016/S0011-9164(02)00416-2.
  144. Yeh H.M., Chen Y.F. (2005). Modified analysis of permeate flux for ultrafiltration in a solid-rod tubular membrane, Journal of Membrane Science, 251, pp. 255–261, https://doi.org/10.1016/j.memsci.2004.11.020.
  145. Yeh H.M. (2009). Exponential model analysis of permeate flux for ultrafiltration in hollow-fiber modules by momentum balance, Chemical Engineering Journal, 147, pp. 202–209, https://doi.org/10.1016/j.memsci.2005.11.002.
  146. Munson-McGee S. (2003). An approximate analytical solution for the fluid dynamics of laminar flow in a porous tube, Journal of Membrane Science, 197, pp. 223–230, https://doi.org/10.1016/S0376-7388(01)00634-2.
  147. Moll R., Moulin Ph., Veyret D., Charbit F. (2002). Numerical simulation of Dean vortices: fluid trajectories, Journal of Membrane Science, 197, pp. 157–172, https://doi.org/10.1016/S0376-7388(01)00606-8.
  148. Moll R., Veyret D., Charbit F., Moulin P. (2007). Dean vortices applied to membrane process Part II: Numerical approach, Journal of Membrane Science, 288, pp. 321–335, 2007. https://doi.org/10.1016/j.memsci.2006.11.037.
  149. Taha T., Cui Z.F. (2002). CFD modelling of gas-sparged ultrafiltration in tubular membranes, Journal of Membrane Science, 210, pp. 13–27, 2002. https://doi.org/10.1016/S0376-7388(02)00360-5.
  150. Dal-Cin M. M., Darcovich K., Bourdoncle M., Khan Z., Caza D. (2006). “Comparison of CFD and one-dimensional Bernoulli solutions of the flow in a plate and frame ultrafiltration module in Z configuration”, Journal of Membrane Science, 268, pp. 74–85, https://doi.org/10.1016/j.memsci.2005.05.031.
  151. Marcos B., Moresoli C., Skorepova J., Vaughan B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration, Journal of Membrane Science, 337, pp. 136–144, https://doi.org/10.1016/j.memsci.2009.03.036.
  152. Afonso F, Miramda J.M., Campos J.B.L.M. (2009). Numerical study of BSA ultrafiltration in the limiting flux regime — Effect of variable physical properties, Desalination, 249, pp. 1139–1150, https://doi.org/10.1016/j.desal.2009.05.012.
  153. Belkacem M., Bahlouli M., Mraoui A., Bensadok K. (2007). Treatment of oil-water emulsion by ultrafiltration: A numerical approach, Desalination, 206, pp. 433–439, https://doi.org/10.1016/j.desal.2006.02.069.
  154. Schausberger P., Norazman N., Li H., Chen V., Friedl A. (2009). Simulation of protein ultrafiltration using CFD: Comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments, Journal of Membrane Science, 337, 1–8, https://doi.org/10.1016/j.memsci.2009.03.022.
  155. Curcio S., Calabrò V., Iorio G. (2009). Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks and hybrid systems, Desalination, 236, pp. 234–243, https://doi.org/10.1016/j.desal.2007.10.072.
  156. Delgrange-Vincent N., Cabassud C., Cabassud M., Durand-Bourlier L., Laîné J.M. (2000). Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production, Desalination, 131, pp. 353-362, https://doi.org/10.1016/S0011-9164(00)90034-1.
  157. Razavi S. M. A., Mousavi S. M., Mortazavi S. A. (2003). Dynamic prediction of milk ultrafiltration performance: A neural network approach, Chemical Engineering Science, 58, pp. 4185–4195, https://doi.org/10.1016/S0009-2509(03)00301-4.
  158. Razavi M., Mortazavi A., Mousavi M. (2003). Dynamic modelling of milk ultrafiltration by artificial neural network, Journal of Membrane Science, 220, pp. 47–58, https://doi.org/10.1016/S0376-7388(03)00211-4.
  159. Curcio S., Calabrò V., Iorio G. (2006). Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks, Journal of Membrane Science, 286, pp. 125–132, https://doi.org/10.1016/j.memsci.2006.09.024.
  160. Cross R. A. (2002). Optimum process designs for ultrafiltration crossflow microfiltration systems, Desalination, 145, pp. 159-163, https://doi.org/10.1016/S0011-9164(02)00402-2.
  161. Zondervan E., Roffel B. (2008). Modeling and optimization of membrane lifetime in dead-end ultra filtration, Journal of Membrane Science, 322, pp. 46–51, https://doi.org/10.1016/j.memsci.2008.05.023.
  162. Busca G., Hilal N., Atkin B. P. (2003). Optimisation of washing cycle on ultrafiltration membranes used in treatment of metalworking fluids, Desalination, I56, pp. 199-207, https://doi.org/10.1016/S0011-9164(03)00342-4.
  163. Childress A. E., Le-Clech P., Daugherty J. L., Chen C., Leslie G. L. (2005). Mechanical analysis of hollow fiber membrane integrity in water reuse applications, Desalination, 180, pp. 5-14, https://doi.org/10.1016/j.desal.2004.12.026.
  164. Paris J., Guichardon P., Charbit F. ()2002 .Transport phenomena in ultrafiltration: a new two-dimensional model compared with classical models, Journal of Membrane Science, 207, pp. 43–58, https://doi.org/10.1016/S0376-7388(01)00752-9.
  165. Sarkar D., Bhattacharya A., Bhattacharjee C. (2010). Modeling the performance of a standard single stirred ultrafiltration cell using variable velocity back transport flux, Desalination, 261, 89–98, https://doi.org/10.1016/j.desal.2010.05.025.
  166. Yeh H.M., Chen Y.F. (2006). Momentum balance analysis of permeate flux for ultrafiltration in tubular membranes with gradually increasing incidental angles of a wired-rod insert, Journal of Membrane Science, 278, pp. 205–211, https://doi.org/10.1016/j.memsci.2005.11.002.
  167. Lipnizki J., Jonsson G. (2002). Flow dynamics and concentration polarisation in spacer-filled channels, Desalination, 146 pp. 213-217, https://doi.org/10.1016/S0011-9164(02)00474-5.
  168. Han S.-Ch., Choo K.-H., Choi S.-J., Benjamin M. (2007). Modeling manganese removal in chelating polymer-assisted membrane separation systems for water treatment, Journal of Membrane Science, 290, pp. 55–61, https://doi.org/10.1016/j.memsci.2006.12.022.
  169. Karasu K., Yoshikawa S., Kentish S., Stevens G. (2009). A model for cross-flow ultrafiltration of dairy whey based on the rheology of the compressible cake, Journal of Membrane Science, 341, pp. 252–260, https://doi.org/10.1016/j.memsci.2009.06.018.
  170. Chang S., Fane A.G., Waite T.D. (2006). Analysis of constant permeate flow filtration using dead-end hollow fiber membranes, Journal of Membrane Science, 268, pp.132–141, https://doi.org/10.1016/j.memsci.2005.06.010.
  171. Pak A., Mohammadi T., Hosseinalipour S.M., Allahdini V. (2008). “CFD modeling of porous membranes, Desalination, 222, pp. 482-488, https://doi.org/10.1016/j.desal.2007.01.152.
  172. Busch J., Cruse A., Marquardt W. (2007). Modeling submerged hollow-fiber membrane filtration for wastewater treatment, Journal of Membrane Science, 288 pp. 94–111, https://doi.org/10.1016/j.memsci.2006.11.008.
  173. Yoon S.-H., Kim H.-S., Yeom I.-T. (2004). Optimization model of submerged hollow fiber membrane modules, Journal of Membrane Science, 234, pp. 147–156, https://doi.org/10.1016/j.memsci.2004.01.018.
  174. Tan C. H., Ng H. Y. (2008). Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations, Journal of Membrane Science, 324, pp. 209–219, https://doi.org/10.1016/j.memsci.2008.07.020.
  175. Morehouse J., Lloyd D., Freeman B., Lawler D., Liechti K., Becker E. (2006). Modeling the stretching of microporous membranes, Journal of Membrane Science, 283, 430–439, https://doi.org/10.1016/j.memsci.2006.07.024.
  176. Kim Y. D., Kim J. Y., Lee H. K., Kim S. C. (2001). A new modeling of asymmetric membrane formation in rapid mass transfer system, Journal of Membrane Science, 190, pp. 69–77, https://doi.org/10.1016/S0376-7388(01)00420-3.
  177. Kikkinides E.S., Stoitsas K.A., Zaspalis V.T., Burganos V.N. (2004). Simulation of structural and permeation properties of multi-layer ceramic membranes, Journal of Membrane Science, 243, pp. 133–141, https://doi.org/10.1016/j.memsci.2004.06.019.
  178. Zhang Q., Jing W., Fan Y., Xu N. (2008). An improved Parks equation for prediction of surface charge properties of composite ceramic membranes, Journal of Membrane Science, 318, pp. 100–106, https://doi.org/10.1016/j.memsci.2008.02.004.

Full Text



© 2014-2019 Sumy State University.
Scientific journal "Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.