Numerical Investigation of the Concave-Cut Baffles Effect in Shell-and-Tube Heat Exchanger | Journal of Engineering Sciences

Numerical Investigation of the Concave-Cut Baffles Effect in Shell-and-Tube Heat Exchanger

Author(s): Petinrin M. O.*, Dare A. A.

Affilation(s): University of Ibadan, Oduduwa Rd, 200284 Ibadan, Oyo State, Nigeria

*Corresponding Author’s Address: layopet01@yahoo.com

Issue: Volume 6; Issue 1 (2019)

Dates:
Paper received: August 5, 2018
The final version of the paper received: December 24, 2018
Paper accepted online: December 29, 2018

Citation:
Petinrin M. O. Numerical Investigation of the Concave-Cut Baffles Effect in Shell-and-Tube Heat Exchanger / M. O. Petinrin, A. A. Dare // Journal of Engineering Sciences. – Sumy : Sumy State University, 2019. – Volume 6, Issue 1. – P. E1-E9.

DOI: 10.21272/jes.2019.6(1).e1

Research Area:  MECHANICAL ENGINEERING: Computational Mechanics

Abstract. In this paper, the performance of shell-and-tube heat exchangers with single-segmental baffle and varying configurations of concave-cut baffles (10, 15 and 20 %) was investigated. The study was carried out for a heat exchanger having either engine oil, water and air as shell-side fluid. For each configuration of the baffles, the results of both the the k-ε and RNG k-ε turbulent models were in very close agreement. The heat exchangers with concave-cut baffles had higher pressure drops and lower performance factors than that of single-segmental baffle at the same range of mass flow rates for all fluid cases. Also, the concave-cut baffle heat exchangers had lower shell-side heat transfer coefficients at the same pressure drop against that of single-segmental baffles. Thus, the use of concave-cut baffles did not exhibit desirable performance in heat exchanger as compared with the segmental baffles.

Keywords: shell-and-tube heat exchanger, pressure drop, weighted performance factor, weighted heat transfer coefficient, concave-cut baffle.

References:

  1. Dubey, V. V. P., Verma, R. R., Verma, P. S., & Srivastava, A. K. (2014). Steady State Thermal Analysis of Shell and Tube Type Heat Exchanger to Demonstrate the Heat Transfer Capabilities of Various Thermal Materials using Ansys. Glob. Journals Inc., Vol. 14, pp. 1–7.
  2. Kapale, U. C., & Chand, S. (2006). Modeling for shell-side pressure drop for liquid flow in shell-and-tube heat exchanger. Int. J. Heat Mass Transf., Vol. 49, pp. 601–610, doi: 10.1016/j.ijheatmasstransfer.2005.08.022.
  3. Nasiruddin, M. H. K. (2007). Heat transfer augmentation in a heat exchanger tube using a baffle. Int. J. Heat Fluid Flow, Vol. 28, pp. 318–328, doi: 10.1016/j.ijheatfluidflow.2006.03.020.
  4. Petinrin, M. O., & Dare, A. A. (2016). Performance of Shell and Tube Heat Exchangers with Varying Tube Layouts. Br. J. Appl. Sci. Technol., Vol. 12, pp. 1–8, doi: 10.9734/BJAST/2016/20021.
  5. Wang, Q., Zeng, M., Ma, T., Du, X., & Yang, J. (2014). Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Appl. Energy, doi: 10.1016/j.apenergy.2014.05.004.
  6. Zhou, J. F., Wu, S. W., Chen, Y., & Shao, C. L. (2015). Semi-numerical analysis of heat transfer performance of fractal based tube bundle in shell-and-tube heat exchanger. Int. J. Heat Mass Transf., Vol. 84, pp. 282–292, doi: 10.1016/j.ijheatmasstransfer.2015.01.038.
  7. Mohammadi, K., & Malayeri, M. R. (2013). Parametric study of gross flow maldistribution in a single-pass shell and tube heat exchanger in turbulent regime. Int. J. Heat Fluid Flow, Vol. 44, pp. 14–27, doi: 10.1016/j.ijheatfluidflow.2013.02.010.
  8. Wang, Q., Chen, G., Zeng, M., Chen, Q., Peng, B., Zhang, D., & Luo, L. (2010). Shell-side heat transfer enhancement for shell-and-tube heat exchangers by helical baffles. Chem. Eng. Trans., Vol. 21, pp. 217–222, doi: 10.3303/CET1021037.
  9. El Maakoul, A., Laknizi, A., Saadeddine, S., El Metoui, M., Zaite, A., Meziane, M., & Ben Abdellah, A. (2016). Numerical comparison of shell-side performance for shel and tube exchangers with trefoil-hole, helical and segmental baffles. Appl. Therm. Eng., doi: 10.1016/j.applthermaleng.2016.08.067.
  10. Zhou, G., Xiao, J., Zhu, L., Wang, J., & Tu, S. (2015). A numerical study on the shell-side turbulent heat transfer enhancement of shell-and-tube heat exchanger with trefoil-hole baffles. Energy Procedia, Vol. 75, pp. 3174–3179, doi: 10.1016/j.egypro.2015.07.656.
  11. Wang, Y., Dong, Q., & Liu, M. (2007). Characteristics of Fluid flow and heat transfer in Shellside of Heat Exchangers with Longitudinal Flow of Shellside Fluid with Different Supporting structures. Challenges of Power Engineering and Environment, Springer, pp. 474–475.
  12. You, Y., Fan, A., Lai, X., Huang, S., & Liu, W. (2013). Experimental and numerical investigations of shell-side thermo-hydraulic performances for shell-and-tube heat exchanger with trefoil-hole baffles. Therm. Eng., Vol. 50, pp. 950–956, doi: 10.1016/j.applthermaleng.2012.08.034.
  13. Ozden, E., & Tari, (2010). Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Convers. Manag., Vol. 51, pp. 1004–1014, doi: 10.1016/j.enconman.2009.12.003.
  14. Kuppan, T. (2013). Heat Exchanger Design. Taylor and Francis, Boca Raton.
  15. Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of heat exchanger design. John Wiley and Sons, Hoboken.
  16. Mukherjee, R. (1998). Effectively design shell-and-tube heat exchangers. Eng. Prog.
  17. Sinnott, R. K. (2005). Chemical Engineering Design. Coulson & Richardson’s Chemical Engineering, Elsevier, Butterworth-Heinemann, Oxford.
  18. Bouhairie, S. (2012). Selecting Baffles for Shell-and-Tube Heat Exchangers. Heat Transf., pp. 27–33.
  19. Jozaei, A. F., Baheri, A., Hafshejani, M. K., & Arad, A. (2012). Optimization of Baffle Spacingon Heat Transfer, Pressure Drop and Estimated Price in a Shell-and-Tube Heat Exchanger. World Appl. Sci. J., Vol. 18, pp. 1727–1736, doi: 10.5829/idosi.wasj.2012.18.12.2484.
  20. Prasanna, V., Purushothama, H. R., et al. (2013). A numerical analysis of hydrodynamic and heat transfer effects of shell-and-tube heat exchanger for different baffle space and cut. Confab., Vol. 2.
  21. Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2011). Fundamentals of heat and mass transfer. John Wiley and Sons, New Jersey.
  22. Cengel, Y. A., & Ghajar, A. J. (2015). Heat and mass transfer: fundamentals and applications. McGraw-Hill, New York.
  23. You, Y., Chen, Y., Xie, M., Luo, X., Jiao, L., & Huang, S. (2015). Numerical simulation and performance improvement for a small size shell-and-tube heat exchanger with trefoil-hole baffles. Therm. Eng., Vol. 89, pp. 220–228, doi: 10.1016/j.applthermaleng.2015.06.012.
  24. Tannehill, J. C., Anderson, D. A., & Pletcher, R. H. (1997). Computational fluid mechanics and heat transfer. Taylor and Francis, Washington.
  25. Wilcox, D. C. (2006). Turbulence modeling for CFD. DCW Industries, California.
  26. Marzouk, O. A., Huckaby, E. D. (2010). Simulation of a swirling gas-particle flow using different k-epsilon models and particle-parcel relationships. Lett., Vol. 18.
  27. COMSOL (2013). CFD module user’s guide. COMSOL
  28. Fries, T., & Matthies, H. G. (2004). A Review of Petrov-Galerkin Stabilization Approaches and an Extension to Meshfree Methods. Sci. Comput. Tech. Univ. Braunschweig, pp. 1–68.
  29. Zienkiewicz, O. C., & Taylor, R. L. (2000). The Finite Element Method: Fluid Dynamics. Butterworth and Heinemann, Oxford.
  30. Petinrin, M. O., Dare, A. A., & Asaolu, G. O. (2016). Finite Element Stabilization Methods and Solvers for Heat Exchanger Applications: A Review. Int. Conf. Mech. Eng. Energy Technol. Manag., pp. 977–987.
  31. Mohammadi, K., Heidemann, W., & Muller-Steinhagen, H. (2009). Numerical Investigation of the Effect of Baffle Orientation on Heat Transfer and Pressure Drop in a Shell and Tube Heat Exchanger With Leakage Flows. Heat Transf. , Vol. 30, pp. 1123–1135, doi: 10.1080/01457630902972694.
  32. Wang, Q., Chen, Q., Chen, G., & Zeng, M. (2009). Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles. International Journal of Heat and Mass Transfer, Vol. 52, pp. 1214–1222, doi: 10.1016/j.ijheatmasstransfer.2008.09.009.
  33. Zhang, J., Li, B., Huang, W., Lei, Y., He, Y., & Tao, W. (2009). Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles. Chemical Engineering Science, Vol. 64, pp. 1643–1653, doi: 10.1016/j.ces.2008.12.018.
  34. Zhang, M., Meng, F., & Geng, Z. (2015). CFD simulation on shell-and-tube heat exchangers with small-angle helical baffles. Chem. Sci. Eng., pp. 1–11, doi: 10.1007/s11705-015-1510-x.

Full Text



© 2014-2019 Sumy State University.
Scientific journal "Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.