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Abstract. The article, based on the performed theoretical research, solves the essential scientific and technical problem of 

increasing the accuracy of identification of wave processes in a hydrodynamic system (pipeline) by developing a generalized 

method of mathematical designing of the dynamics of a continuous viscous and weakly compressed fluid in the 

hydrodynamic system pipeline based on the Navier-Stokes equation. Amplitude-frequency characteristics represent 

parameters of wave processes in the hydraulic drive system. A partial solution of Navier–Stokes equations, under zero initial 

conditions, is proposed in the form of four-pole equations, the components of which are represented in the form of the 

Laplace image of the corresponding relative pressure and flow coordinates and the the hydraulic line parameters determine 

the four-pole elements themselves It is also proposed to determine the values of the four-pole elements based on time 

constants and relative damping coefficients on the frequency characteristics of hydraulic lines with distribution parameters 

based on the condition of equality of the first resonant frequencies and amplitudes (at these frequencies). With the help of the 

developed methods, the primary dynamic parameters of the amplitude-frequency characteristics of continuous viscous and 

weakly compressed liquid in the pipeline of hydraulic systems for different flow ranges. This made it possible to achieve the 

following practical results: the high degree of adequacy of the developed mathematical model indicates an increase in the 

reliability of determining the operating characteristics when designing a hydraulic drive. The high accuracy of determining 

the first resonant frequencies and amplitudes allows for creating a hydraulic pump with improved operational characteristics. 

Keywords: vibration, operating fluid, Navier–Stokes equations, amplitude-frequency response, resonance mode.

1 Introduction 

The hydraulic drive was widely used in technological 

equipment due to its simplicity, reliability in operation, 

low metal consumption, and optimal load parameters on 

the operating body [1]. The structural characteristics of 

the hydraulic drive and its components are mainly 

determined based on the implementation of the kinematic 

and power parameters of the executive body in the mode 

of its operating and free movements. The experience of 

operating machine-building technological equipment [2] 

shows that using static and kinematic requirements 

during design is insufficient. It was determined that 

vibrations occur in the hydraulic system of metal-

operating technological equipment under external 

influence, which causes unstable speed of movement of 

operating units and, as a result, additional oscillations 

occur on the executive body [3]. All this causes a general 

decrease in the reliability of technological equipment and 

a deterioration in the quality of the work performed. A 

sharp change in power and a high frequency of operation 

of a hydraulic drive with multiple operating parameters 

complicates the design and research of technological 

equipment. Analyzing the ambiguity of the dynamic 

properties of hydraulic drive elements shows the 

fundamental complexity of the mathematical description 

of hydrodynamic processes. Thus, the modern hydraulic 

drive of technological equipment is classified as a 

complex dynamic object, for the effective study of which, 

it is advisable to use mathematical and computer 

modeling [4]. 
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The parameters of hydraulic lines significantly impact 

the dynamic characteristics of hydraulic equipment. 

Frequently, there are vibrations in hydraulic equipment, 

which is a consequence of the coincidence of resonance 

frequencies of oscillations of hydraulic lines with 

hydraulic devices connected to the hydraulic system and 

with frequencies of external periodic influences. 

Therefore, considering the frequency characteristics of 

hydraulic lines when designing hydraulic systems of 

technological equipment is a necessary condition for 

developing hydraulic systems with a reduced vibration 

level [5]. 

Mathematical modeling of work processes in various 

technological devices is widely used. It allows for 

investigating the impact of design and mode factors on 

the main characteristics of the device to outline specific 

ways to improve them while significantly reducing the 

volume of experimental research. Despite the complexity 

of the calculations and assumptions in the mathematical 

description of the work process, which can be defined as 

experimental data accumulation, the perspective and 

relevance of using mathematical modeling to study 

hydrodynamic processes in the hydraulic system are 

apparent [6]. 

2 Literature Review 

The physical parameters of the energy carrier 

(operating fluid) and its nodes’ structural parameters 

significantly influence the hydraulic drive’s speed, energy 

saturation, and compactness [7]. This leads to the 

development of mathematical models in the form of 

systems of differential equations of motion of structural 

elements of the hydraulic drive based on an artificial 

dynamic model with reduced coefficients for the 

oscillating system. The given coefficients describe the 

elastic-viscous characteristics of the hydraulic link based 

on the mathematical model of Kelvin–Focht [8] with 

further linearization of the dynamic properties, namely 

the assumption of constancy of the combined modulus of 

elasticity, density, and dynamic viscosity of the operating 

fluid, and this leads directly to disregarding wave 

processes [9] in the hydraulic drive itself. In turn, the 

existing differential equations with distributed 

coefficients are supplemented by differential equations of 

flow rates [10] in partial integral solutions of non-

discontinuity and Navier–Stokes differential equations for 

an ideal operating fluid [11]. 

The practical implementation of such an approach is 

possible only for mathematical models of mostly low 

dimensionality. It describes the properties of objects in a 

narrow range of changes in such operating parameters as 

the amplitude and frequency of oscillation of hydraulic 

drive elements. Moreover, this leads to the limitation of 

the area of use of the results of mathematical modeling, 

which do not take into account the influence of all 

transient processes in the hydraulic circuit [12], which 

leads to the accumulation of excess, not implemented by 

the systems of technological movements [2–4]. 

In [13], an original method of “particles in cells” was 

proposed, which combines the advantages of the 

Lagrangian and Euler approaches [14]. The solution area 

in this method is divided by a fixed (Eulerian) grid. 

However, the continuous medium is interpreted by a 

discrete model – a set of “particles” of fixed mass 

(Lagrangian grid of particles) that move through the 

Eulerian grid of cells is considered. Particles determine 

the parameters of the fluid itself (mass, energy, velocity), 

while the Euler grid determines the parameters of the 

field (pressure, density, temperature). This method makes 

it possible to study complex phenomena in the dynamics 

of multicomponent environments; particles follow free 

surfaces and boundaries of environments. However, this 

method’s main drawback is the solid medium’s discrete 

representation, which results in numerical instability 

(fluctuations). It is also difficult to obtain information for 

regions of significant rarefaction, where virtually all 

particles leave. 

In works [15, 16], a numerical method was developed 

concerning (ψ, ω) – the system of equations for the 

current function ψ and the vortex ω. A general drawback 

of these methods is the use of a boundary condition for a 

vortex on a solid surface in one form or another, which is 

absent in the physical formulation of the problem. 

An additional iterative process associated with this 

boundary condition limits the speed of convergence of 

numerical algorithms. In addition, the apparent limitation 

of the solution methods for the (ψ, ω) system is 

associated with the impossibility of their development in 

the case of spatial flows of a viscous liquid and 

compressed gas flows.  

One of the current scientific problems in 

hydromechanics is the description of the motion of a 

viscous, weakly compressed fluid, which is described by 

the continuity and Navier-Stokes equations [4, 10, 11]. 

These include fluid movement problems during laminar 

and turbulent flow around bodies of finite dimensions, 

currents in the wake zone and areas of flow disruption, 

and mixing and boundary layers at the body surface [17]. 

The nonlinearity of the Navier-Stokes equations and 

the presence of small parameters in their higher 

derivatives create difficulties, both in analytical research 

and in the numerical integration of these equations using 

computer systems. Thus, the problem of developing 

methods for solving the system of continuity and Navier-

Stokes equations with high accuracy (especially in the 

multidimensional case), which will allow studying wave 

processes [18] in hydraulic systems of technological 

systems, remains an urgent task. 

The presented research aims to improve the accuracy 

of identification of wave processes in hydraulic systems 

of technological machines by developing and 

implementing new, more efficient mathematical 

modeling. This will help achieve several qualitative 

practical results: increasing the reliability of determining 

performance characteristics when designing a hydraulic 

drive, the possibility of developing systems with 

improved performance characteristics, and reducing the 

time required to develop specific technologies. 
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To achieve the aim, the following tasks were solved: 

– to develop a mathematical model of the dynamics of 

continuous viscous and weakly compressed fluid in the 

pipeline of hydraulic systems; 

– to develop methods for solving the mathematical 

model of the dynamics of a continuous viscous and 

weakly compressed fluid in hydraulic lines, which will 

allow determining the parameters of wave processes in 

hydraulic systems; 

– to determine the main dynamic parameters of 

continuous viscous and weakly compressed fluid in the 

pipeline of hydraulic systems for different flow ranges. 

3 Research Methodology 

A system with distributed parameters can represent a 

hydraulic line when modeling wave processes. The basic 

equations of unsteady fluid motion are the Navier-Stokes 

differential equations [10–12]. The following 

assumptions can be used when using the Navier-Stokes 

equations: for subsonic velocities, convective terms of 

nonlinear transport acceleration can be neglected [19]. 

Since the fluid velocity in the longitudinal direction is 

much greater than in the radial direction, the pressure 

across the cross-section can be taken constant; the fluid 

density ρ is taken constant and is determined depending 

on the average value of the set pressure. 

Then, when studying the dynamic processes in the 

hydraulic line (Figure 1), Navier–Stokes equations can be 

written for small increments in the following form: 

 {
−
∂(Δ𝑝)

𝜕𝑥
=

𝜌

𝑆𝑇

𝜕(Δ𝑞)

𝜕𝑡
+ 𝑟Δ𝑞;

𝜕(Δ𝑝)

𝜕𝑥
= −

𝑆𝑇

𝐸

𝜕(Δ𝑞)

𝜕𝑡
,

 (1) 

where Δp = p2 – p1 – pressure difference imposed on 

the set pressure p0, Pa; Δq = q2 –– q1 – flow difference 

imposed on the set flow rate q0, m3/s; x – linear 

coordinate of the hydraulic line, m; ST – constant cross-

section area, m2; dT – diameter, m. 

 

Figure 1 – The design scheme of dynamic processes  

in a hydraulic line 

Equation (1) contains the cost coefficient [20]: 

𝑟 =
Δ𝑝

𝑙𝑇𝑞0
=

𝜆𝑞0𝜌

2𝑑𝑇𝐹𝑇
2, 

where λ – coefficient of resistance to the movement of 

the operating fluid from the action of internal friction 

forces [21]. 

The coefficient r characterizes the viscous friction loss 

per unit length of the nozzle attributed to the fluid flow 

rate. 

Equation (1) also contains the modulus of elasticity: 

𝐸 = 𝐸0/ (1 +
𝑑𝑇𝐸0

𝛿0𝐸𝑚
), 

where Е0, Ет – the modulus of elasticity of the fluid 

and the material of the pipe walls, respectively, N/m2; 

δ0 – thickness, m. 

The component rΔq is responsible for the fluid 

viscosity caused by the velocity gradient in the flow 

direction, while the velocity gradient across the cross-

section is neglected. 

The system of partial differential equations (1) 

determines the dynamic characteristics of the hydraulic 

line depending on the parameters 
𝜌

𝑆𝑇
𝑟 and 

𝑆𝑇

𝐸
, distributed 

along its length. 

For the entire length lT of the hydraulic line, the 

following parameters express the fluid inertia, resistance, 

and capacitance of the hydraulic line, respectively: 

𝐿𝑇 =
𝜌𝑙𝑇
𝑆𝑇

;  𝑅 = 𝑟𝑙𝑇;  𝐶𝑙 =
𝑆𝑇𝑙𝑇
𝐸
. 

The solution of the system of equations (1) at zero 

initial conditions can be represented in the form of four-

pole equations [22]: 

 {
𝑃1 = 𝐴𝑇(𝑠)𝑃2 + 𝐵𝑇𝑄2;
𝑃1 = 𝐶𝑇(𝑠)𝑃2 + 𝐷𝑇𝑄2,

 (2) 

where AT(s), BT(s), CT(s), and DT(s) – the elements of 

the four-pole, determined by the parameters of the 

hydraulic line; P1, P2, Q1, and Q2 – Laplace images of the 

corresponding relative coordinates of pressure and flow at 

the beginning (x = 0) and at the end (x = lT) of the 

hydraulic line (Figure 1): 

𝑃1 = 𝐿 [
Δ𝑝1(𝑡)

𝑝10
] ;  𝑃2 = 𝐿 [

Δ𝑝2(𝑡)

𝑝20
] ; 

𝑄1 = 𝐿 [
Δ𝑞1(𝑡)

𝑞10
] ; 𝑄2 = 𝐿 [

Δ𝑞2(𝑡)

𝑞20
]. 

The system of equations (2) can be rewritten in the 

following matrix form: 

 [
𝑃1
𝑄1
] = 𝐺(𝑠) [

𝑃2
𝑄2
], (3) 

with the condition 𝐴𝑇(𝑠)𝐷𝑇(𝑠) − 𝐵𝑇(𝑠)𝐶𝑇(𝑠) = 1 and 

the following matrix: 

𝐺(𝑠) = [
𝐴𝑇(𝑠) 𝐵𝑇(𝑠)

𝐶𝑇(𝑠) 𝐷𝑇(𝑠)
]. 

The structural diagram of the hydraulic line according 

to the system of equations (2) is presented in Figure 2. 
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Figure 2 – The structural diagram of the hydraulic line  

in the form of four-pole equations  

For the system of equations with distributional 

parameters (1) with the assumptions made, the elements 

of the system of equations (2) are as follows: 

 

{
 
 

 
 
𝐴𝑇(𝑠) =

𝑝20

𝑝10
𝑙𝑇𝑐ℎ(Г(𝑠));

𝐵𝑇(𝑠) =
𝑞20

𝑞10
𝑙𝑇𝑍𝐶(𝑠)𝑠ℎ(Г(𝑠));

𝐶𝑇(𝑠) =
𝑝20

𝑞10

1

𝑍𝐶(𝑠)
𝑙𝑇𝑠ℎ(Г(𝑠));

𝐷𝑇(𝑠) = 𝑙𝑇𝑐ℎ(Г(𝑠)),

  

where Г(𝑠) =
1

𝑎
√(

𝐹𝑇𝑟

𝜌
+ 𝑠) 𝑠 – the propagation 

constant of the wave process; 𝑎 = √
𝐸

𝜌
 – the speed of 

sound in the operating fluid medium, m/s;  

𝑍𝑐(𝑠) = √𝑟 +
𝜌

𝐹𝑇
𝑠 – the characteristic resistance of the 

hydraulic line. 

The frequency response of the hydraulic line is 

constructed by replacing the parameter s with jω, where 

j – imaginary unit (j2 = –1). 

In this case, the propagation constant of the wave 

process can be represented as Г(𝑗𝜔) = 𝛾1 + 𝑗𝜗1, where 

the following conditions are met: 

𝑟𝑆𝑇
𝜔𝜌

≪ 1; 𝜗1 =
𝜔

𝑎
; 𝛾1 =

1

2

𝑟𝑆𝑇

√𝜌𝐸
. 

A study of the amplitude characteristics of the transfer 

matrix G(s) elements shows that the resonant peaks’ 

amplitudes do not change at successive frequencies. This 

result contradicts the experimental data [23] for the 

laminar flow of the operating fluid. 

A significant discrepancy between theoretical and 

experimental results obtained from the system of 

equations (1) based on the assumptions made is explained 

by the fact that with an increase in the excitation 

frequencies, the effective resistance of a small-diameter 

hydraulic line, in laminar fluid flow, increases 

significantly, since the velocity profiles along the cross-

section also change. This factor was not considered in the 

original system of differential equations (1), where losses 

during the oscillatory process in hydraulic lines were 

considered only through the coefficient r, determined 

from the steady-state flow characteristics. 

Values of the components of the transfer matrix G(s) 

provided that the hydraulic lines have a small diameter 

and taking into account the velocity gradient across the 

cross-section under the laminar steady-state regime [24]: 

 

{
  
 

  
 𝐴𝑇(𝑠) =

𝑝20

𝑝10
𝑙𝑇 𝑐𝑜𝑠 (

𝑠𝜂𝑙𝑇

𝑎
) ;

𝐵𝑇(𝑠) = −
𝑞20𝜌𝑎𝜂

𝑞10𝑆𝑇
𝑠𝑖𝑛 (

𝑠𝜂𝑙𝑇

𝑎
) ;

𝐶𝑇(𝑠) =
𝑝20𝑆𝑇

𝑞10𝜌𝑎𝜂
𝑠𝑖𝑛 (

𝑠𝜂𝑙𝑇

𝑎
) ;

𝐷𝑇(𝑠) = 𝑙 𝑐𝑜𝑠 (
𝑠𝜂𝑙𝑇

𝑎
) ,

 (4) 

where 𝜂 = 𝛾2 + 𝑗𝜗2 – a complex frequency function 

determined by a complex expression of Thomson 

functions depending on the parameter

 

ℵ =
𝑑𝑇

2
√
𝜔

𝜈
; ν – the 

kinematic viscosity, m2/s. 

If we separate the real part γ2 and the imaginary part ϑ2 

of the function, it can be got: 

 𝛾2 =
𝑠𝑖𝑛(

1

2
𝑎𝑟𝑐𝑡𝑔

𝑛

𝑚
)

(𝑚2+𝑛2)
1
4

;  𝜗2 = −
𝑐𝑜𝑠(

1

2
𝑎𝑟𝑐𝑡𝑔

𝑛

𝑚
)

(𝑚2+𝑛2)
1
4

, (5) 

where with an error that does not exceed 1 %, and for 

ℵ ≥ 4.0, the value of 𝑛 =
√2

ℵ
(
8ℵ−3√2

8ℵ+√2
), and 𝑚 =

√2

ℵ
− 1. 

The frequency responses of the elements AT(jω) and 

DT(jω) from the system of equations (4) show that at 

frequencies 𝜔𝑖 =
𝑖𝜋𝑎

2𝑙𝑇|𝜗2|𝜔=𝜔𝑖
 (i = 1, 3, 5, …), the 

amplitude responses have resonant peaks defined by the 

expressions: 

{
 
 

 
 |𝐴𝑇|𝜔=𝜔𝑖 =

𝑝20
𝑝10

𝑠ℎ(𝑖
𝜋

2
|
𝛾2
𝜗2
|
𝜔=𝜔𝑖

) ;

|𝐷𝑇|𝜔=𝜔𝑖 = 𝑠ℎ(𝑖
𝜋

2
|
𝛾2
𝜗2
|
𝜔=𝜔𝑖

) ,

 

where |
𝛾2

𝜗2
|
𝜔=𝜔𝑖

 – the ratio of the absolute values of γ2 and 

ϑ2 at the corresponding resonant frequencies. 

Since the hydraulic lines of metal operating 

technological equipment are 𝑖
𝜋

2
|
𝛾2

𝜗2
|
𝜔=𝜔𝑖

≪ 1 [25], these 

expressions can be written in the following form: 

 {

|𝐴𝑇|𝜔=𝜔𝑖 =
𝑝20

𝑝10
𝑖
𝜋

2
|
𝛾2

𝜗2
|
𝜔=𝜔𝑖

;

|𝐷𝑇|𝜔=𝜔𝑖 = 𝑖
𝜋

2
|
𝛾2

𝜗2
|
𝜔=𝜔𝑖

.
 (6) 

Similarly, the amplitude-frequency characteristics of 

the elements ВT(jω) and СT(jω) have resonant peaks at 

frequencies 𝜔𝑘 = 𝑘
𝜋𝑎

𝑙𝑇|𝜗2|𝜔=𝜔𝑘
 (k = 1, 2, 3, …): 

 {

|𝐵𝑇|𝜔=𝜔𝑘 =
𝑞20

𝑝10

𝜌𝑎|𝜂|𝜔=𝜔𝑘

𝑆𝑇
𝑘𝜋 |

𝛾2

𝜗2
|
𝜔=𝜔𝑘

;

|𝐶𝑇|𝜔=𝜔𝑘 =
𝑝20

𝑞10

𝑆𝑇

𝜌𝑎|𝜂|𝜔=𝜔𝑘
𝑘𝜋 |

𝛾2

𝜗2
|
𝜔=𝜔𝑘

,
 (7) 
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where |𝜂|𝜔=𝜔𝑘– the modulus of the complex function 

𝜂 = 𝛾2 + 𝑗𝜗2 at 𝜔 = 𝜔𝑘 . 

From expressions (6) and (7), it follows that the 

amplitudes of the resonant peaks of the frequency 

characteristics of the elements of the transfer matrix G(s) 

decrease at successive resonant frequencies with a slope 

of the derivative of 10,0 dB/dec, which is consistent with 

experimental data [23, 26]. 

A sufficiently accurate approximation of the frequency 

characteristics of the characteristics can be obtained using 

the transfer matrix G(s) with the following matrix 

elements [27]: 

{
 
 

 
 𝐴𝑇(𝑠) = 𝑘𝑇1(𝑇𝑇1

2 𝑠2 + 2𝜉𝑇1𝑇𝑇1𝑠 + 1);

𝐵𝑇(𝑠) = 𝑘𝑇2(𝑇𝑇3𝑠 + 1)(𝑇𝑇2
2 𝑠2 + 2𝜉𝑇2𝑇𝑇2𝑠 + 1);

𝐶𝑇(𝑠) = 𝑇𝑇4𝑠(𝑇𝑇2
2 𝑠2 + 2𝜉𝑇2𝑇𝑇2𝑠 + 1);

𝐷𝑇(𝑠) = 𝑇𝑇1
2 𝑠2 + 2𝜉𝑇1𝑇𝑇1𝑠 + 1.

  (8) 

The time constants TT1 and TT2 and the relative 

damping coefficients ξТ1 and ξТ2 are determined from the 

frequency characteristics of the hydraulic lines with the 

distribution parameters described by equations (4), based 

on the condition of equality of the first resonant 

frequencies and amplitudes (at these frequencies) of the 

characteristics of the corresponding elements AT(jω), 

BT(jω), CT(jω), and DT(jω) based on equations (4) and 

(8). Under these conditions, the following relations will 

be obtained [4, 8]: 

{
  
 

  
 𝑇𝑇1 =

2𝑙𝑇

𝜋𝑎
;  𝑇𝑇2 =

𝑙𝑇

𝜋𝑎
;

𝜁𝑇1 =
𝜋

8
𝑎𝑟𝑐𝑡𝑔

2√2𝑇𝑇1𝜈

𝑑𝑇
;  𝜁𝑇2 =

1

4
𝑎𝑟𝑐𝑡𝑔

2√2𝑇𝑇2𝜈

𝑑𝑇
;

𝑇𝑇3 =
𝜌

𝑆𝑇𝑟
;  𝑇𝑇4 =

𝑝20𝑆𝑇𝑙𝑇

𝑞10𝐸
;

𝑘𝑇1 =
𝑝20

𝑝10
;  𝑘𝑇2 =

𝑞20

𝑝10
𝑅.

   (9) 

In the case when the range of significant frequencies 

of the processes studied in the hydraulic system is limited 

to

 

𝜔 ≪
𝜋𝑎

2𝑙𝑇
, the second-order differentiating links in the 

transfer matrix (8) can be neglected. Therefore, the 

following simplified transfer matrix can describe the 

dynamic characteristics of the hydraulic lines: 

 𝑇1 + 𝑇4 =
𝑙1𝑝10

𝐸0𝜐0
(1 +

𝐸𝑇1𝑙𝑇1

𝑆1𝑙1
). (10) 

Depending on the tasks under study, transfer functions 

of hydraulic lines of various types are used. The 

calculation and study of the dynamic characteristics of 

hydraulic systems can be carried out taking into account 

two types of influence: external forces on the operating 

body of mechanical engineering equipment and periodic 

changes in flow rates caused by the pulsation of the 

hydraulic pump supply to the hydraulic system. 

In the case when the study is carried out under the 

influence of an external load, the transfer functions of the 

pressure and drain hydraulic lines are required [28, 29]. 

For a pressure hydraulic line, the input is the change in 

flow rate at its outlet Q2, and the output is the change in 

pressure P2. Accordingly, the transfer function of the 

pressure hydraulic line – 𝑊𝑇1(𝑠) =
𝑃2

𝑄2
. Therefore, from 

the system of equations (2) it can be obtained: 

 𝑊𝑇1 =
𝐵𝑇−

𝑃1
𝑄1
𝐷𝑇(𝑠)

−𝐴𝑇+
𝑃1
𝑄1
𝐶𝑇(𝑠)

, (11) 

where P1/Q1 is the transfer function of the element 

located at the inlet to the hydraulic line. 

In order to take into account the dynamic 

characteristics of the drain hydraulic line in the 

calculation of the hydraulic system, a transfer function is 

required, the input of which is the change in flow at the 

beginning of the drain hydraulic line and the output 

coordinate is the change in pressure at this point. 

Accordingly, the transfer function of the drain hydraulic 

line can be represented as – 𝑊𝑇2(𝑠) =
𝑃1

𝑄1
. 

From the system of equations (2) it can be obtained: 

 𝑊𝑇2 =
𝐴𝑇(𝑠)

𝑃2
𝑄2
+𝐵𝑇(𝑠)

𝐶𝑇(𝑠)
𝑃2
𝑄2
+𝐷𝑇(𝑠)

, (12) 

where P2/Q2 – the transfer function of the element 

located at the outlet of the drain hydraulic line. 

When studying the response of hydraulic systems to 

the pulsating supply of a hydraulic pump, it is advisable 

to use a transfer function that determines the ratio of the 

change in pressure at the outlet of the hydraulic line to the 

change in pressure at its inlet:  

 
𝑃2

𝑃1
=

1

𝐴𝑇(𝑠)+𝐵𝑇(𝑠)
𝑄2
𝑃2

, (13) 

where Q2/P2 is the inverse transfer function of the 

element or apparatus at the outlet of the hydraulic line. 

4 Results 

Figure 3 shows the theoretical and experimental 

frequency characteristics [25, 30] of a hydraulic line 

made of copper pipes with an internal diameter of 

15.0 mm, a wall thickness of 1.5 mm, and a length of 

4.65 m at an installed pressure of p10 = 1.47 MPa. 

The experimental and theoretical frequency 

characteristics 
𝑃1(𝑗𝜔)

𝑄1(𝑗𝜔)
 (Figure 4) were constructed based 

on equations (4) and (8) for the case of a throttle washer 

at the hydraulic line outlet using equation (12). The 

studies were carried out on a hydraulic line made of 

copper pipes with an internal diameter of 14.0 mm, a wall 

thickness of 2.0 mm, and a length of 3.2 m [22]. 

The frequency characteristics of hydraulic lines 

𝑃2(𝑗𝜔) 𝑃1(𝑗𝜔)⁄ , which correspond to equation (13) for 

similar conditions (Figure 4), are shown in Figure 5. 

The presented results of the theoretical (equations (4) 

and (8)) and experimental studies (Figure 5) are also in 

good agreement with each other. In particular, the results 

measured up to natural frequencies of 180 Hz at a phase 

shift of –240° and up to natural frequencies of 100 Hz for 

the amplitude of natural oscillations within 7 dB are in 

good agreement. The accuracy of the corresponding 

mathematical model does not exceed 9 %. 
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Figure 3 – Diagrams of hydraulic line frequency characteristics:  

1 – change in the amplitude of oscillations of the operating fluid 

depending on its natural frequency; 2 – change in the phase of 

oscillations of the operating fluid depending on the natural 

frequency (solid line – experimental dependence;  

dashed line – theoretical dependence) 

 
a 
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Figure 4 – Diagrams of hydraulic line frequency characteristics:  

а – change in the amplitude of oscillations of the operating fluid 

depending on its natural frequency; b – change in the phase of 

oscillations of the operating fluid depending on the natural 

frequency (solid line – theoretical dependence based on (4); 

dashed line – theoretical dependence based on (8);  

dot line – experimental dependence) 

 
a 

 

b 

Figure 5 – Diagrams of hydraulic line frequency characteristics:  

а – change in the amplitude of oscillations of the operating fluid 

depending on its natural frequency; b – change in the phase of 

oscillations of the operating fluid depending on the natural 

frequency (solid line – theoretical dependence based on (4); 

dashed line – theoretical dependence based on (8);  

dot line – experimental dependence) 

5 Discussion 

The matching of the characteristics constructed 

(Figure 3) at the concentrated parameters with the 

experimental ones is satisfactory up to a frequency of 

70 Hz, which covers the first resonant peak of 28 dB 

amplitude at a phase shift of 160°. The average accuracy 

of the developed mathematical model is 9 %. 

Since the hydraulic lines of hydraulic drives of 

machine-building equipment are characterized by a small 

length at limited impact frequencies, in most cases, the 

dynamic characteristics can be considered only up to the 

first resonant frequency. In these cases, approximating 

these characteristics using the transfer matrix (8) gives 

accurate results for engineering calculations [8, 12]. 

The experimental study (Figure 4) of the frequency 

characteristics [3, 20] was carried out by imposing a 

sinusoidal effect on the curve of the set flow rate 

q10 = 32 l/min. The set pressure value at the beginning of 

the hydraulic line was p10 = 1.47 MPa, Reynolds number  

Re = 2100, the sound velocity in the operating fluid 

ср = 1200 m/s, and kinematic viscosity ν = 2.5·10–5 m2/s. 
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Based on equations (4), the theoretical characteristics 

in Figure 4 were constructed. They are in good agreement 

with the experimental results. The approximated 

characteristics based on equations (8) also agree with the 

frequency covering the first resonant peak at 40 Hz with a 

phase shift of 20° and 90 Hz for a natural oscillation 

amplitude of 19 dB. The accuracy of the corresponding 

mathematical model is 9 %. 

The discrepancy between the theoretical results 

(Figures 3–5) obtained from the mathematical model (1) 

under the assumptions made and the experimental data is 

explained by the fact that with an increase in the 

excitation frequencies, the effective resistance of a small-

diameter hydraulic line under the laminar flow regime 

increases significantly since the velocity profiles along 

the cross-section of the pipes change. 

The losses during the oscillatory process in a hydraulic 

line in laminar flow, considering the velocity gradient 

across the cross-section, increase since the profile of the 

velocity vectors ceases to have a parabolic shape. The 

velocity profiles also change under turbulent flow 

conditions (Re > 2300). Accordingly, matrix elements (4) 

must be adjusted for turbulent flow. 

However, in most metal operating equipment, 

hydraulic lines with a turbulent flow regime are used only 

at very short lengths since losses in long lines increase 

intensively in turbulent flow [2, 8]. 

6 Conclusions 

Based on theoretical studies, a significant scientific 

and technical problem of improving the accuracy of 

identifying wave processes in hydraulic system pipelines 

has been solved by developing a generalized method for 

mathematical modeling of the dynamics of a continuous 

viscous and slightly compressed fluid in a hydraulic 

system pipeline based on the Navier-Stokes equation. 

A solution to the Navier–Stokes equation, at zero 

initial conditions, was proposed in the form of four-pole 

equations, the components of which are represented in the 

form of a Laplace image of the corresponding relative 

coordinates of pressure and flow, and the four-pole 

elements themselves were determined by the parameters 

of the hydraulic line. 

The values of the four-pole elements were determined 

based on time constants and relative damping coefficients 

from the frequency characteristics of hydraulic lines with 

distribution parameters based on the condition of equality 

of the first resonant frequencies and amplitudes. 

The developed methods allowed for evaluating the 

main dynamic parameters of the frequency characteristics 

for a continuous viscous and slightly compressed fluid in 

hydraulic systems (pipelines) for different flow ranges. 

The accuracy of the developed mathematical model 

does not exceed 9 %. 
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