Adsorption of Crystal Violet on Rice Husk Activated Carbon | Journal of Engineering Sciences

Adsorption of Crystal Violet on Rice Husk Activated Carbon

Author(s): Salahudeen N.*, Alhassan A.

Affiliation(s): Department of Chemical and Petroleum Engineering, Bayero University, Gwarzo Rd, PMB 3011, Kano, Nigeria

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 1 (2022)

Dates:
Submitted: December 17, 2021
Accepted for publication: March 18, 2022
Available online: March 22, 2022

Citation:
Salahudeen N., Alhassan A. (2022). Adsorption of crystal violet on rice husk activated carbon. Journal of Engineering Sciences, Vol. 9(1), pp. F11-F15, doi: 10.21272/jes.2022.9(1).f2

DOI: 10.21272/jes.2022.9(1).f2

Research Area:  CHEMICAL ENGINEERING: Processes in Machines and Devices

Abstract. The need to develop effective technology for the treatment of liquid effluent of dye-intensive industries such as textile, rubber, paint, and printing is synonymous with the need to save the life-threatening risks posed by these carcinogenic and mutagenic pollutants on human and aquatic lives. Isotherms of adsorption of crystal violet (CV) on activated carbon (AC) synthesized from rice husk are presented herewith to elucidate the mechanism of the adsorption process of crystal violet dye contaminated water on rice husk activated carbon. AC was synthesized from rice husk via a phosphoric acid activating agent at low temperatures. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm studies were employed. The mean square values for Langmuir, Freundlich, Temkin and D-R models were 0.98, 0.91, 0.94, and 0.63, respectively. Analysis of the isotherms of the adsorption of crystal violet sorbate on the synthesized rice husk sorbent suggested that the adsorption process proceeded via a homogeneous monolayer mechanism. Langmuir isotherm gave the best fit of the adsorption process. Langmuir isotherm constant was –1.40 l/mg, and the equilibrium adsorption capacity was 13.53 mg/g.

Keywords: process innovation, adsorption isotherm, rice husk, activated carbon, crystal violet, energy efficiency.

References:

  1. Hao, O. J., Kim, H., Chiang, P. C. (2000). Decolorization of waste water. Critical Reviews in Environmental Science and Technology, Vol. 30(4), pp. 449-505.
  2. Bertolini, T. C. R., Izidoro, J. C., Magdalena, C. P., Fungaro, D. A. (2013). Adsorption of crystal violet dye from aqueous solution to zeolites from coal fly and bottom ashes. Orbital: The Electronic Journal of Chemistry, Vol. 5(3), pp. 179-191.
  3. Ma, H. T., Ly, H. C., Pham, N. B., Nguyen, D. C., Vo, K. T. D., Tuan, P. D. (2017). Effect of the carbonization and activation process on the adsorption capacity of rice husk activated carbon. Vietnam Journal of Science and Technology, Vol. 55(4), pp. 494-494.
  4. Parshetti, G. K., Parshetti, S. G., Telke, A. A., Kalyani, D. C., Doong, R. A., Govindwar, S. P. (2011). Biodegradation of crystal violet by Agro bacterium radiobacter. Journal of Environmental Sciences, Vol. 23(8), pp. 1384-1393.
  5. Ojedokun, A. T., Bello, O. S. (2016). Sequestering heavy metals from wastewater using cow dung. Water Resources and Industry, Vol. 13, pp. 7-13.
  6. Sarma, G. K., Gupta, S. S., Bhattacharyya, K. G. (2019). Nanomaterials as versatile adsorbents for heavy metal ions in water: A review. Environ. Sci. Pollut. Control Ser., Vol. 26, pp. 6245-6278.
  7. Somsesta, N., Sricharoenchaikul, V., Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater. Chem. Phys., Vol. 240, 122221.
  8. Danish, M., Ahmad, M., T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev., Vol. 87, pp. 1-21.
  9. Gonzalez-Garcia, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev., Vol. 82; pp. 1393-1414.
  10. Zakaria, R., Jamalluddin, N. A., Bakar, Z. M. A. (2021). Effect of impregnation ratio and activation temperature on the yield and adsorption performance of mangrove based activated carbon for methylene blue removal. Results in Materials, Vol. 10, 100183.
  11. Canales-Flores, R. A., Prieto-García, F. (2020). Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. Diam. Relat. Mater., Vol. 109, 108027.
  12. Mandal, A., Bar, N., Das, S. K. (2020). Phenol removal from wastewater using low-cost natural bioadsorbent neem (Azadirachta Indica) leaves: Adsorption study and MLR modeling. Sustainable Chemistry and Pharmacy, Vol. 17, 100308.
  13. Mansour, R. A., El Shahawy, A. Attia, A., Beheary, M. S. (2020). Brilliant green dye biosorption using activated carbon derived from guava tree wood. Int. J. Chem. Eng., Vol. 20, 8053828.
  14. Tang, S. H., Zaini, M. A. A. (2020). Development of activated carbon pellets using a facile low-cost binder for effective malachite green dye removal. J. Clean. Prod., Vol. 253, 119970.
  15. Islam, M. A., Chowdhury, M. A., Mozumder, M. S. I., Uddin, M. T. (2021). Langmuir adsorption kinetics in liquid media: Interface reaction model. ACS Omega, Vol. 6, pp. 14481-14492.
  16. Sadegh, H., Ali, G.A.M., Gupta, V. K., Makhlouf, A. S. H., Shahryari-Ghoshekandi, R., Nadagouda, M. N., Sillanpaa, M., Megiel, E. (2017). The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostructure Chem., Vol. 7, pp. 1-14.
  17. Salahudeen, N., Ahmed, A. S., Al-Muhtaseb, A. H., Dauda, M., Waziri, S. M., Jibril B. Y. and Al-Sabahi, J. (2015). Synthesis, characterization and adsorption study of nano-sized activated alumina synthesized from kaolin using novel method. Powder Technology, Vol. 280, pp. 266-272.
  18. Das, B., Mondal, N. K., Bhaumik, R., Roy, P. (2014). Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil. Int. J. Environ. Sci. Technol., Vol. 11, pp. 1101-1114.
  19. Said, K. A. M., Ismail, N. Z., Jama’in, R. L., Alipah, N. A. M., Sutan, N. M., Gadung, G. G., Baini, R., Zauzi, N. S. A. (2018). Application of Freundlich and Temkin Isotherm to Study the Removal of Pb(II) Via Adsorption on Activated Carbon Equipped Polysulfone Membrane. International Journal of Engineering & Technology, Vol. 7(3.18), pp. 91-93.
  20. Senthilkumaar, S., Kalaamani, P., Subburaam, C. V. (2006). Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree. Journal of Hazardous Materials, Vol. B136, pp. 800-808.
  21. Aydogmus, R., Depci, T., Sarikaya, M., Kul, A. R., Onal, Y. (2016). Adsorption of Crystal violet on activated carbon prepared from coal flotation concentrate. IOP Conf. Series: Earth and Environmental Science, Vol. 44, 052022.

Full Text



© 2014-2021 Sumy State University.
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.