Analysis of the Three-Dimensional Accelerating Flow in A Mixed Turbine Rotor | Journal of Engineering Sciences

Analysis of the Three-Dimensional Accelerating Flow in A Mixed Turbine Rotor

Author(s): Chelabi M. A.1*, Basova Y.2, Hamidou M. K.1, Dobrotvorskiy S.2

Affiliation(s):
1 Laboratory of Applied Mechanics, Faculty of Mechanical Engineering, University of Science and Technology
Mohamed Boudiaf-El Mnouar, PO Box 1505 Bir El Djir 31000 Oran, Algeria;
2 Department of Mechanical Engineering Technology and Metal-Cutting Machines, Educational and Scientific Institute of Mechanical Engineering and Transport, National Technical University “Kharkiv Polytechnic Institute”, 2, Kyrpychova St., 61002 Kharkiv, Ukraine

*Corresponding Author’s Address: [email protected]

Issue: Volume 8, Issue 2 (2021)

Dates:
Submitted: July 19, 2021
Accepted for publication: November 17, 2021
Available online: November 22, 2021

Citation:
Chelabi M. A., Basova Y., Hamidou M. K., Dobrotvorskiy S. (2021). Analysis of the three-dimensional accelerating flow in a mixed turbine rotor. Journal of Engineering Sciences, Vol. 8(2), pp. D1-D7, doi: 10.21272/jes.2021.8(2).d2

DOI: 10.21272/jes.2021.8(2).d1

Research Area:  MECHANICAL ENGINEERING: Dynamics and Strength of Machines

Abstract. An investigation on new rotor blade designs conceived to produce higher exit relative kinetic energy of a mixed flow turbine is undertaken. Accelerating the flow through the rotor in a relative frame of reference improves energy transfer to the shaft, which is only produced in a rotating rotor. A three-dimensional converging rotor channel might respond to the analysis requirements in the subsonic flow regimes. Effectively, the machine experiences a 3.71 % and 3.67 % increase in work output and efficiency, respectively, representing this study’s primary intent. This has been accomplished by varying the shroud profile to a lesser eye tip diameter, then the hub profile to a larger eye root diameter. At last, both shroud and hub profiles are varied. It appears possible to enhance the performance of the rotor in terms of optimum work done and efficiency by devising suitable blade geometry designs. ANSYS CFX 15 is the code of all simulation works.

Keywords: blade, vane-to-vane plane, hub, shroud, meridional plane.

References:

  1. Hamel, M., Hamidou, M. K., Cherif, H. T., Abidat, M., Litim, S. A. (2008). Design and flow analysis of radial and mixed flow turbine volutes. ASME Turbo Expo. ASME, New York. Vol. 1(PART C), pp. 2329-2333, doi: 10.1115/GT2008-50503.
  2. Ali, L. S., Mohammed, H., Kamel, H. M. (2017). The number of blade effects on the performance of a mixed turbine rotor. Engineering Review, Vol. 37(3), pp. 349-360.
  3. Meghnine, M. A., Hamidou, M. K., Hamel, M. (2017). Influence of the volute cross-sectional shape on mixed inflow turbine performances. Advances in Mechanical Engineering, Vol. 9(7), pp. 1-15, doi: 10.1177/1687814017708174.
  4. Hamel, M., Bencherif, M. M., Hamidou, M. K. (2017). Investigation of a twin entry mixed flow turbine volute, benefits with regard to the eco-system. Materials Physics and Mechanics, Vol. 32(1), pp. 31-42.
  5. Omar, Z. K., Mohammed, H., Kamel, H. M. (2017). Computational aerodynamic performance of mixed-flow turbine blade design. Engineering Review, Vol. 37(2), pp. 201-213.
  6. Leonard, T., Spence, S., Filsinger, D., Starke, A. (2020). Design and performance analysis of mixed flow turbine rotors with extended blade chord. Journal of Turbomachinery, Vol. 142(12), 121003. doi: 10.1115/1.4047894.
  7. Lee, S. P., Barrans, S. M., Nickson, A. K. (2021). The impact of volute aspect ratio and tilt on the performance of a mixed flow turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 235(6), pp. 1435-1450, doi: 10.1177/0957650921998228.
  8. Bencherif, M. M., Hamidou, M. K., Hamel, M., Abidat, M. (2016). Study of unsteady performance of a twin-entry mixed flow turbine. Journal of Applied Mechanics and Technical Physics, Vol. 57(2), pp. 300-307, doi: 10.1134/S0021894416020139.
  9. Rajeevalochanam, P., Sunkara, S. N. A., Mayandi, B., Banda, B. V. G., Chappati, V. S. K., Kumar, K. (2016). Design of highly loaded turbine stage for small gas turbine engine. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016. Seoul, South Korea, Vol. 2C-2016, 123972, doi: 10.1115/GT2016-56178.
  10. Chen, H., Abidat, M., Baines, N. C., Firth, M. R. (1992). The effects of blade loading in radial and mixed flow turbines. ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition, GT 1992, Cologne, Germany, Vol. 1, 111210, doi: 10.1115/92-GT-092.
  11. Kononenko, S., Dobrotvorskiy, S., Basova, Y., Gasanov, M., Dobrovolska, L. (2019) Deflections and frequency analysis in the milling of thin-walled parts with variable low stiffness. Acta Polytechnica, Vol. 59(3), pp. 283-291, doi: 10.14311/AP.2019.59.0283.
  12. Dobrotvorskiy, S., Kononenko, S., Basova, Y., Dobrovolska, L., Edl, M. (2021). Development of optimum thin-walled parts milling parameters calculation technique. 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE 2021, Lviv, Ukraine, Vol.2021, pp. 343-352, doi: 10.1007/978-3-030-77719-7_34.
  13. Abidat, M., Hamidou, M. K., Hachemi, M., Hamel, M., Litim, S. A. (2008). Performance prediction of a mixed flow turbine. Mecanique et Industries, Vol. 9(1), pp. 71-79, doi: 10.1051/meca:2008009.
  14. Chelabi, M. A., Hamidou, M. K., Hamel, M. (2017). Effects of cone angle and inlet blade angle on mixed inflow turbine performances. Periodica Polytechnica Mechanical Engineering, Vol. 61(3), pp. 225-233, doi: 10.3311/PPme.9890.
  15. Lee, S. P., Jupp, M. L., Barrans, S. M., Nickson, A. K. (2019). Analysis of leading edge flow characteristics in a mixed flow turbine under pulsating flows. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 233(1), pp. 78-95, doi: 10.1177/0957650918778661.
  16. Rajoo, S., Martinez-Botas, R. (2008). Mixed flow turbine research: A review. Journal of Turbomachinery, Vol. 130(4), 044001, doi: 10.1115/1.2812326.
  17. Palfreyman, D., Martinez-Botas, R.F. (2002). Numerical study of the internal flow field characteristics in mixed flow turbines. American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, Vol. 5(A), pp. 455-472, doi: 10.1115/GT2002-30372.
  18. Whitfield, A., Baines., N.C. (1990). Design of radial turbomachines (1st ed.). Harlow, Essex, England: Longman Scientific and Technical, Wiley, New York, USA.
  19. Watson, N., Janota, M. S. (1982). Turbocharging the Internal Combustion Engine (1st ed.). Palgrave, Kent. doi: 10.1007/978-1-349-04024-7.
  20. Pesiridis, A. (2007). Turbocharger Turbine Unsteady Aerodynamics with Active Control. PhD Thesis, Imperial College, London, UK.
  21. Pesiridis, A., Martinez-Botas, R. F. (2007). Experimental evaluation of active flow control mixed-flow turbine for automotive turbocharger application. Journal of Turbomachinery, Vol. 129(1), pp. 44-52, doi: 10.1115/1.2372778.
  22. Pesiridis, A., Martinez-Botas, R. F. (2006). Active control turbocharger for automotive application: An experimental evaluation. Conference: 8th International Conference on Turbocharging and Turbochargers, CRC Press, London, pp. 223-232, doi: 10.1016/B978-1-84569-174-5.50020-8.
  23. Pesiridis, A., Martinez-Botas, R. F. (2005). Experimental evaluation of active flow control mixed-flow turbine for automotive turbocharger application. ASME Turbo Expo 2005 – Gas Turbie Technology: Focus for the Future, Reno-Tahoe, Nevada, USA, Vol. 6(B), GT2005-68830, pp. 881-895, doi: 10.1115/GT2005-68830.
  24. Wallace, F. J., Blair, G. P. (1965). The pulsating-flow performance of inward radial-flow turbines. ASME 1965 Gas Turbine Conference and Products Show, Vol. 1-A, 113390, doi: 10.1115/65-GTP-21.
  25. Yamaguchi, H., Nishiyama, T., Horiai, K., Kasuya, T. (1984). High performance Komatsu KTR150 turbocharger. SAE, 840019, doi: 10.4271/840019.
  26. Ketata, A., Driss, Z. (2017). Numerical study of a vanned mixed flow turbine operating in various steady flow conditions. International Journal of Mechanics and Applications, Vol.7(1), pp. 24-30, doi: 10.5923/j.mechanics.20170701.03.
  27. Leonard, T., Spence, S., Early, J., Filsinger, D. (2013). Numerical study of a vanned mixed flow turbine operating in various steady flow conditions. 6th International Conference on Pumps and Fans with Compressors and Wind Turbines, ICPF 2013, Beijing, China, 52(TOPIC 4), 042012, doi: 10.1088/1757-899X/52/4/042012.
  28. Luddecke, B., Filsinger, D., Ehrhard, J. (2012). On mixed flow turbines for automotive turbocharger applications. International Journal of Rotating Machinery, Vol. 2012, 589720, doi: 10.1155/2012/589720.
  29. Padzillah, M. H., Rajoo, S., Martinez-Botas, R. F. (2015). Experimental and numerical investigation on flow angle characteristics of an automotive mixed flow turbocharger turbine. Jurnal Teknologi, Vol. 77(8), pp. 7-12, doi: 10.11113/jt.v77.6148.
  30.  Abidat, M., Chen, H., Baines, N. C., Firth, M. R. (1992). Design of a highly loaded mixed flow turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 206(2), pp. 95-107, doi: 10.1243/PIME_PROC_1992_206_016_02.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU