Challenges of Fuel Cell Technologies for the Needs of the Energy Transition to a Zero-carbon Technology | Journal of Engineering Sciences

Challenges of Fuel Cell Technologies for the Needs of the Energy Transition to a Zero-carbon Technology

Author(s): Ostroverkh A. S.1*, Solonin Yu. M.1, Bezdorozhev O. V.1, Ostroverkh Y. M.1, Shcherbatiuk O. M.2, Dubau M.3, Kovalenko L. L.4

Affiliation(s):
1 Frantsevich Institute for Problems of Materials Science of the National Academy of Science of Ukraine,
3, Krzhyzhanovsky St., Kyiv, 03142, Kyiv, Ukraine;
2 Hydrogen Systems Engineering LLC, 4/19, P. Bolbochana Str., 01014, Kyiv, Ukraine;
3 Department of Surface and Plasma Science, Charles University, 2, V Holešovičkách St., CZ-18000 Prague 8, Czech Republic;
4 Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Science of Ukraine,
32/34, Palladina Ave., 03142 Kyiv, Ukraine

*Corresponding Author’s Address: anna.ostroverkh84@gmail.com

Issue: Volume 8, Issue 2 (2021)

Dates:
Submitted: August 18, 2021
Accepted for publication: December 9, 2021
Available online: December 14, 2021

Citation:
Ostroverkh, A. S., Solonin, Yu. M., Bezdorozhev, O. V., Ostroverkh, Y. M.,Shcherbatiuk O. M., Dubau M.,Kovalenko L. L. (2021). Challenges of fuel cell technologies for the needs of the energy transition to a zero-carbon technology. Journal of Engineering Sciences, Vol. 8(2), pp. G1-G10, doi: 10.21272/jes.2021.8(2).g1

DOI: 10.21272/jes.2021.8(2).g1

Research Area:  CHEMICAL ENGINEERING: Advanced Energy Efficient Technologies

Abstract. The study focuses on the challenges of implementing fuel cell technologies and materials to achieve efficient use of green hydrogen and zero CO2 emissions. It is shown that only identifying the optimal parameters for each fuel cell component and technology and testing the system will help achieve the planned output-specific power. The thorough structure optimization of the membrane-electrode complex and testing in actual operating conditions will accelerate the implementation of fuel cell technologies. An example of structural optimization and improvement of catalytic activity of electrodes and electrolytes is shown. The current density of 0.36 μA/cm2 was obtained at a voltage of 0.6 V and a temperature of 500 °C for the fuel cell with 75–80 μm thick ZnO electrolyte and without membrane electrode assembly optimization. It is shown that the fuel cell electrodes’ catalytic activity depends on the modeling profile and structure of the catalytic layer, which was verified by testing in real fuel cell operating conditions.

Keywords: fuel cells, electrolysis cell, material science, hydrogen energy, decarbonization.

References:

  1. Staffell, D. I., Scamman, A. V., Abad, P., Balcombe, P. E., Dodds, P., Ekins, N., Shahd, K., Ward, R. (2019). The role of hydrogen and fuel cells in the global energy system. Energy and Environmental Science, Vol. 12, pp. 463–491.
  2. Solonin, Yu. M. (2019). On the implementation of the target comprehensive program scientific research of NAS of Ukraine “Fundamental Aspects of Renewable Hydrogen Energy and Fuel-clear Technologies”. Bulletin of the National Academy of Science of Ukraine, Vol. 4, pp. 37–41.
  3. Owusu, P. A., Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, Vol. 3(1), 1167990, doi: 10.1080/23311916.2016.1167990.
  4. Cox, L. A. (2019). Communicating more clearly about deaths caused by air pollution. Global Epidemiology, Vol. 1(100003), pp. 1–7.
  5. Sweileh, W. M., Al-Jabi, S. W., Zyoud, S. H., Sawalha, A. F. (2018). Outdoor air pollution and respiratory health: A bibliometric analysis of publications in peer-reviewed journals (1900 – 2017). Multidisciplinary Respiratory Medicine, Vol. 13(15) pp. 1–12, doi: 10.1186/s40248-018-0128-5.
  6. Meschede, C. (2020). The Sustainable development goals in scientific literature: A bibliometric overview at the meta-level. Sustainability, Vol. 12, 4461.
  7. Sun, T., Ocko, I. B., Sturcken, E., Steven, P. H. (2021). Path to net zero is critical to climate outcome. Scientific Reports, Vol. 11, 22173.
  8. Xiong, P., Peng, X., Taie, Z., Liu, J., Zhang, Y., Peng, X., Regmi, Y. N., Fornaciari, J. C., Capuano, C., Binny, D., Kariuki, N. N., Myers, D. J., Scott, M. C., Webe, A. Z., Danilovic, N. (2020). Hierarchical electrode design of highly efficient and stable unitized regenerative fuel cells (URFCs) for long-term energy storage. Energy and Environmental Science, Vol. 13, pp. 4872–4881.
  9. Egeland-Eriksen, T., Hajizadeh, A., Sartori, S. (2021). Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives. International Journal of Hydrogen Energy, Vol. 46(63), pp. 31963–31983, doi: 10.1016/j.ijhydene.2021.06.21.
  10. Bianchi, F. R., Bosio, B. (2021). Operating principles, performance and technology readiness level of reversible solid oxide cells. Sustainability, Vol. 13, 4777, doi: 10.3390/su13094777.
  11. Hong, W. T., Stoerzinger, K. A., Lee, Y.-L., Giordano, L., Grimaud, A., Johnson, A. M., Hwang, J., Crumlin, E. J., Yang, W., Shao-Horn, Y. (2017). Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy and Environmental Science, Vol. 10, pp. 2190–2200.
  12. Calle-Vallejo, F., Tymoczko, J., Colic, V., Vu, Q. H., Pohl, M. D., Morgenstern, K., Loffreda, D., Sautet, P., Schuhmann, W., Bandarenka, A. S. (2015). Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science, Vol. 350, pp. 185–190, 2015.
  13. Escudero-Escribano, M., Malacrida, P., Hansen, M. H., Vej-Hansen, U. G., Velázquez-Palenzuela, A., Tripkovic, V., Schiøtz, J., Rossmeisl, J., Stephens, I. E. L., Chorkendorff, I. (2016). Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, Vol. 352, pp. 73–76.
  14. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H. L., Snyder, J. D., Li, D., Herron, J. A., Mavrikakis, M., Chi, M., More, K. L., Li, Y., Markovic, N. M., Somorjai, G. A., Yang, P., Stamenkovic, V. R. (2014). Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, Vol. 343, pp. 1339–1343.
  15. Li, M., Zhao, Z., Cheng, T., Fortunelli, A., Chen, C.-Y., Yu, R., Zhang, Q., Gu, L., Merinov, B. V., Lin, Z., Zhu, E., Yu, T., Jia, Q., Guo, J., Zhang, L., Goddard, W. A., Huang, Y., Duan, X. (2016). Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, Vol. 354, pp. 1414–1419.
  16. Kuo, D.-Y., Kawasaki, J. K., Nelson, J. N., Kloppenburg, J., Hautier, G., Shen, K. M., Schlom, D. G., Suntivich, J. (2017). Influence of surface adsorption on the oxygen evolution reaction on IrO2 (110). Journal of the American Chemical Society, Vol. 139, pp. 3473–3479.
  17. Jensen, K. D., Tymoczko, J., Rossmeisl, J., Bandarenka, A. S., Chorkendorff, I., Escudero-Escribano, M., Stephens, I. E. L. (2018). Elucidation of the oxygen reduction volcano in alkaline media using a copper-platinum (111) alloy. Angewandte Chemie International Edition, Vol. 57, pp. 2800–2805.
  18. Chen, J. G., Jones, C. W., Linic, S., Stamenkovic, V. R. (2017). Best practices in pursuit of topics in heterogeneous electrocatalysis. ACS Catalysis, Vol. 7(9), pp. 6392–6393
  19. Stevens, M. B., Enman, L. J., Batchellor, A. S., Cosby, M. R., Vise, A. E., Trang, C. D. M., Boettcher, S. W. (2017). Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chemistry of Materials, Vol. 29(1), pp. 120–140.
  20. McCrory, C. C. L., Jung, S., Ferrer, I. M., Chatman, S. M., Peters, J. C., Jaramillo, T. F. (2015). Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. Journal of the American Chemical Society, Vol. 137, pp. 4347–4357.
  21. Ostroverkh, A., Dubau, M., Kúš, P., Haviar, S., Václavů, M., Šmíd, B., Fiala, R., Yakovlev, Y., Ostroverkh, Y., Johánek, V. (2020). Durable ultra-low-platinum ionomer-free anode catalyst for hydrogen proton exchange membrane fuel cell. International Journal of Energy Research, Vol. 44(6), pp. 4641–4651, doi: 10.1002/er.5245.
  22. Ostroverkh, A., Johánek, V., Dubau, M., Kúš, P., Khalakhan, I., Šmíd, B., Fiala, R., Václavů, M., Ostroverkh, Y., Matolín, V. (2019). Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering. International Journal of Hydrogen Energy, 2019, Vol. 44(35), pp. 19344–19356, doi: 10.1016/j.ijhydene.2018.12.206.
  23. Paul, D. K., McCreery, R., Karan, K. (2014). Proton transport property in supported Nafion nanothin films by electrochemical impedance spectroscopy. Journal of The Electrochemical Society, Vol. 161(14), pp. F1395–F1402.
  24. Choi, P., Jalani, N. H., Datta, R. (2005). Thermodynamics and proton transport in Nafion: II. Proton diffusion mechanisms and conductivity. Journal of the Electrochemical Society, Vol. 152(3), E123.
  25. Rajeswari, K., Buchi Suresh, M., Hareesh, U. S., Rao, Y. S., Das, D., Johnson, R. (2011). Studies on ionic conductivity of stabilized zirconia ceramics (8YSZ) densified through conventional and non-conventional sintering methodologies. Ceramics International, Vol. 37(8), pp. 3557–3564, doi: 10.1016/j.ceramint.2011.05.151.
  26. Qiao, Z., Xia, C., Cai, Y., Afzal, M., Wanga, H., Qiaod J., Zhu, B. (2018). Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. Journal of Power Sources, Vol. 392, pp. 33–40, doi: 10.1016/j.jpowsour.2018.04.096.
  27. Paydar, S., Akbar, N., Shi, Q., Wu, Y. (2021). Developing cuprospinel CuFe2O4–ZnO semiconductor heterostructure as a proton conducting electrolyte for advanced fuel cells. International Journal of Hydrogen Energy, Vol. 46(15), pp. 9927–9937, doi: 10.1016/j.ijhydene.2020.04.198.
  28. Chen, X., Dong, B., Islam, Q. A., Song, H., Wu, Y. (2021). Semiconductor-ionic properties and device performance of heterogeneous La-doped CeO2-ZnO nanocomposites. International Journal of Hydrogen Energy, Vol. 46(15), pp. 9968–9975, doi: 10.1016/j.ijhydene.2020.04.174.
  29. Garbayo, I., Baiutti, F., Morata, A., Tarancón, A. (2018). Engineering mass transport properties in oxide ionic and mixed ionic-electronic thin film ceramic conductors for energy applications. Journal of the European Ceramic Society, Vol. 39(2-3), pp. 101–114, doi: 10.1016/j.jeurceramsoc.2018.09.004.
  30. Lim, D., Im, H., Song, S. (2016). Spatial distribution of oxygen chemical potential under potential gradients and theoretical maximum power density with 8YSZ electrolyte. Scientific Reports, Vol. 6, 18804, doi: 10.1038/srep18804.
  31. Yousefkhani, M. B., Ghadamian, H., Daneshvar, K., Alizadeh, N., Troconis, B. C. R. (2020). Investigation of the fuel utilization factor in PEM fuel cell considering the effect of relative humidity at the cathode. Energies, Vol. 13, 6117, doi: 10.3390/en13226117.
  32. , L., Xing, Y., Xu, H., Wang, H., Zhong, J., Xuan, J. (2017). Comparative study of solid oxide fuel cell combined heat and power system with multi-stage exhaust chemical energy recycling: modeling, experiment and optimization. Energy Conversion and Management, Vol. 139(1), pp. 79–88, doi: 10.1016/j.enconman.2017.02.045.
  33. Kúš, P., Ostroverkh, A., Ševčíková, K., Khalakhan, I., Fiala, R., Skála, T., Tsud, N. (2016). Magnetron sputtered Ir thin film on TiC-based support sublayer as low-loading anode catalyst for proton exchange membrane water electrolysis. International Journal of Hydrogen Energy, Vol. 41(34), pp. 15124–15132, doi: 10.1016/j.ijhydene.2016.06.248.
  34. Kúš, P., Ostroverkh, A., Khalakhan, I., Fiala, R., Kosto, Y., Šmíd, B., Lobko, Y., Yakovlev, Y., Nováková, J., Matolínová, I., Matolín, V. (2019). Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells. International Journal of Hydrogen Energy, Vol. 44(31), pp. 16087-16098.
  35. Ostroverkh, A., Dubau, M., Johánek, V., Václavů, M., Šmíd, B., Veltruská, K., Ostroverkh, Y., Fiala, R., Matolín, V. (2018). Efficient Pt-C MEA for PEMFC with low platinum content prepared by magnetron sputtering. Fuel Cells, Vol. 18(1), 137, doi: 10.1002/fuce.201700137.

Full Text



© 2014-2021 Sumy State University.
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.