Decontamination of Oil-Polluted Soils: Power of Electronic Bioinformatic Databases | Journal of Engineering Sciences

Decontamination of Oil-Polluted Soils: Power of Electronic Bioinformatic Databases

Author(s): Ablieieva I. Yu.1*, Plyatsuk L. D.1, Liu T.2, Berezhna I. O.1, Yanchenko I. O.1

Affiliation(s):
1 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Swedish University of Agricultural Sciences, 5, Almas Allé, Box 7015, 75007 Uppsala, Sweden

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 2 (2022)

Dates:
Submitted: May 11, 2022
Accepted for publication: September 5, 2022
Available online: September 9, 2022

Citation:
Ablieieva I. Yu., Plyatsuk L. D., Liu T., Berezhna I. O., Yanchenko I. O. (2022). Decontamination of oil-polluted soils: Power of electronic bioinformatic databases. Journal of Engineering Sciences, Vol. 9(2), pp. H9-H16, doi: 10.21272/jes.2022.9(2).h2

DOI: 10.21272/jes.2022.9(2).h2

Research Area:  CHEMICAL ENGINEERING: Environmental Protection

Abstract. The main idea was to solve the problem related to oil contamination of soil using bioremediation with bioaugmentation with modeled microorganism strains. The paper aimed to develop a bacterial consortium for petroleum hydrocarbon degradation during the biological treatment of oil-contaminated soils using electronic databases. The research methodology included an analysis of the mechanisms and metabolic pathways of petroleum hydrocarbon degradation and an assessment of the possible reaction modulus and enzymatic systems for the degradation of aromatic compounds. The taxonomic classification and review of oil compound transformation metabolic pathways were carried out using electronic KEGG, MetaCyc, and EzTaxon databases. The KEGG database was used to create a microbiological consortium of certain strains of bacteria that improved hydrocarbon degradation process performance. Identification of bacteria’s complete genome using Island Viewer 4 allowed to create of a consortium of oil-destructive bacteria consisting of such strains: Pseudoxanthomonas spadix BD-a59, Rhodococcus jostii RHA1, Rhodococcus aetherivorans IcdP1, Pseudomonas putida ND6, Pseudomonas stutzeri 19SMN4, Pseudomonas fluorescens UK4, Acinetobacter lactucae OTEC-02, Bacillus cereus F837/76.7.9. The ratio between the mentioned strains of microorganisms in the consortium was set at 20 % : 20 % : 15 % : 10 % : 10 % : 5 % : 5 % : 15 %. This bacterial consortium for aromatic hydrocarbons was created according to the metabolic information of basic enzymatic systems and the predominant transformation of particular oil compounds using the BacDive database.

Keywords: soil pollution, bioremediation, oil biodegradation, synergism.

References:

  1. Zhang, X., Xu, D.J., Zhu, C.Y., et al. (2012). Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem. Eng. J., Vol. 209, pp. 138-146, doi: 10.1016 j.cej.2012.07.110.
  2. Azadi, D., Shojaei, H., Mobasherizadeh, S.et al. (2017). Screening, isolation and molecular identification of biodegrading mycobacteria from Iranian ecosystems and analysis of their biodegradation activity. AMB Express, Vol. 7(180), doi: 10.1186/s13568-017-0472-4.
  3. Dai, X., Lv, J., Yan, G., Chen, C., Guo, S., Fu, P. (2020). Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. Bioresource Technology, Vol. 309, doi: 10.1016/j.biortech.2020.123305.
  4. Das, K., Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, Vol. 98(7),
    pp. 1339-134, doi: 10.1016/j.biortech.2006.05.032.
  5. Liu, Y., Li, C., Huang, L., He, Y., Zhao, T., Han, B., Jia, X. (2017). Chinese Journal of Chemical Engineering Combination of a crude oil-degrading bacterial consortium under the guidance of strain tolerance and a pilot-scale degradation test. Chinese Journal of Chemical Engineering, Vol. 25(12), pp. 1838-1846, doi: 10.1016/J.CJCHE.2017.02.001.
  6. Jain, P., Bajpai, V. (2012). Biotechnology of bioremediation – a review. International journal of environmental sciences, Vol. 3(1), pp. 535-549, doi: 10.6088/ijes.2012030131053.
  7. Stoyanova, K., Gerginova, M., Dincheva, I., Peneva, N., Alexieva, Z. (2022). Biodegradation of Naphthalene and Anthracene by Aspergillus glaucus Strain Isolated from Antarctic Soil. Processes, Vol. 10, pp. 873, doi: 10.3390/pr10050873.
  8. Sierra-Garcia, I. N., Oliveira, V. M. (2013). Microbial Hydrocarbon Degradation: Efforts to Understand Biodegradation in Petroleum Reservoirs. in Chamy R, Biodegradation Engineering Technology, Intech Open London, pp. 47-72, doi: 10.5772/55920.
  9. Ramadass, K., Megharaj, M., Venkateswarlu, K., Naidu, R. (2018). Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Science of The Total Environment, Vol. 636, pp. 968-974, doi: 10.1016/j.scitotenv.2018.04.379.
  10. Yan, S., Wang, Q., Qu, L. et al. (2013). Characterization of Oil-Degrading Bacteria from Oil-Contaminated Soil and Activity of their Enzymes. Biotechnology & Biotechnological Equipment, Vol. 27(4), pp. 3932-3938, doi: 10.5504/BBEQ.2013.0050.
  11. Das, P., Yang, X.-P., Ma, L. (2014). Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Frontiers in microbiology, Vol. 5(696), article ID 696, doi: 10.3389/fmicb.2014.00696.
  12. Patowary, K., Patowary, R., Kalita, M. C., Deka, S. (2016). Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites. Frontiers in Microbiology, Vol. 7(1092), doi: 10.3389/fmicb.2016.01092.
  13. Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A. O., Peralba, M. do C. R., Bento, F. M. (2011). Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technology, Vol. 102(23),
    pp. 11003-11010, doi: 10.1016/j.biortech.2011.09.074.
  14. Adhikari, D., Araki, K. S., Mukai, M., Kai, T., Kubota, K., Kawagoe, T., Kubo, M. (2015). Development of an Efficient Bioremediation System for Petroleum Hydrocarbon Contaminated Soils Based on Hydrocarbon Degrading Bacteria and Organic Material Control. Austin Journal of Biotechnology & Bioengineering, Vol. 2(3), pp. 1048–1054.
  15. Lladó, S., Solanas, A. M, de Lapuente, J., Borràs, M., Viñas, M. (2012). A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Science of the Total Environment, Vol. 435-436, pp. 262-269, doi: 10.1016/j.scitotenv.2012.07.032.
  16. Mrozik, A., Piotrowska-Seget, Z. (2009). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, Vol. 165, pp. 363-375, doi: 10.1016/j.micres.2009.08.001.
  17. Varjani, S. J., Upasani, V. N. (2017). Crude oil degradation by Pseudomonas aeruginosa NCIM 5514 : Influence of process parameters. Indian Journal of Experimental Biology, Vol. 55, pp. 493-497.
  18. Uzoigwe, C., Burgess, J. G., Ennis, C. J. et al (2015). Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiology, Vol. 6(245), doi: 10.3389/fmicb.2015.00245.
  19. Duarte, M., Jauregui, R., Vilchez-Vargas, R., Junca, H., Pieper, D. H. (2014). Aroma Deg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. Database: the journal of biological databases and curation, 2014 (bau118), doi: 10.1093/database/bau118.
  20. Bertelli, C., Laird, M. R., Williams, K.P. et al (2017). Island Viewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Research, Vol. 45(W1), pp. W30-W35, doi: 10.1093/nar/gkx343.
  21. Caspi, R., Billington, R., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., et al. (2018). The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Research, Vol. 46(1), pp. D633-D639, doi:10.1093/nar/gkv1164.
  22. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, Vol. 45(D1), pp. D353-D361, doi:10.1093/nar/gkw1092.
  23. Lhotský, O, Krákorová, E., Linhartová, L., Křesinová, Z., Steinová, J., Dvořák, L., Rodsand, T., Filipová, A. Kroupová, K., Wimmerová, L., Kukačka, J., Cajthaml, T. (2017). Assessment of biodegradation potential at a site contaminated by a mixture of BTEX, chlorinated pollutants and pharmaceuticals using passive sampling methods – Case study. Science of The Total Environment, Vol. 607-608, pp. 1451-1465, doi: 10.1016/j.scitotenv.2017.06.193.
  24. Pathak, A., Chauhan, A., Blom, J. et al. (2016). Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation. PLOS ONE, Vol. 11(8), pp. e0161032, doi: 10.1371/journal.pone.0161032.
  25. Auffret, M. D., Yergeau, E., Labbe, D. et al (2015). Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Applied Microbiology Biotechnology, Vol. 99, pp. 2419-2430, doi: 10.1007/s00253-014-6159-8.
  26. Godheja, J., Shekhar, S.K., Satyanarayan, G. N. V. et al. (2017). Antibiotic and Heavy Metal Tolerance of Some Indigenous Bacteria Isolated From Petroleum Contaminated Soil. International Journal of Current Microbiology and Applied Sciences, Vol. 6(3), pp. 194-211, doi:10.20546 / ijcmas.2017.603.021.
  27. Shankar, S., Kansrajh, C., Dinesh, M. G., Satyan, R. S., Kiruthika, S., Tharanipriya, A. (2014). Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. International Journal of Environmental Science and Technology, Vol. 11, pp. 367-376, doi:10.1007/s13762-013-0366-1.
  28. You, Z., Xu, H., Zhang, S., Kim, H., Chiang, P. (2018). Comparison of Petroleum Hydrocarbons Degradation by Klebsiell apneumoniae and Pseudomonas aeruginosa. Applied Science, Vol. 8(12), pp. 2551, doi: 10.3390/app8122551.
  29. Deveryshetty, J., Phale, P. S. (2010). Biodegradation of phenanthrene by Alcaligenes sp. strain PPH: partial purification and characterization of 1-hydroxy-2-naphthoic acid hydroxylase. FEMS Microbiology Letters, Vol. 311(1), pp. 93-101, doi: 10.1111/j.1574-6968.2010.02079.x.
  30. Dueholm, M. S., Albertsen, M., D’Imperio, S. et al. (2014). Complete genome of Rhodococcus pyridinivorans SB3094, a methyl-ethylketone-degrading bacterium used for bioaugmentation. Genome Announcements, Vol. 2(3), pp. e00525-14, doi: 10.1128/genomeA.00525-14.
  31. Nwogu, T. P., Azubuike, C. C., Ogugbue, C. J. (2015). Enhanced Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbons after Amendment with Capra aegagrushircus (Goat) Manure. Biotechnology Research International, Article ID 657349, 7 pages, doi: 10.1155/2015/657349.
  32. Okafor, C. P., Udemang, N. L., Chikere, C. B., Akaranta, O., Ntushelo, K. (2021). Indigenous microbial strains as bioresource for remediation of chronically polluted Niger delta soils. Scientific African, Vol. 11, pp. e00682, doi: 10.1016/j.sciaf.2020.e00682.
  33. Jahir, A. K., Syed, H. A. R. (2011). Isolation and characterization of micro-organism from oil contaminated sites. Advances in Applied Science Research, Vol. 2(3), pp. 455-460.
  34. Kidibule, P. E., Sosovelem, E. M., Mshandetem, A. M. (2014). Isolation and Identification of Microorganisms from Crude Oil Contaminated Soils of Dar es Salaam, Tanzania. British Biotechnology Journal, Vol. 4(8), pp. 918-931, doi: 10.9734/BBJ/2014/11780.
  35. Tuhuloula, A., Suprapto, S., Altway, A., Juliastuti, S. R. (2019). Biodegradation of Extractable Petroleum Hydrocarbons by Consortia Bacillus cereus and Pseudomonas putida in Petroleum Contaminated-Soil. Indonesian Journal of Chemistry, Vol. 19(2), pp. 347-355, doi: 10.22146/ijc.33765.
  36. Jussila, M. M., Zhao, J., Suominen, L. et al. (2007). TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environmental Pollution, Vol. 146(2), pp. 510-524.
  37. Rajaei, S., Seyedi, S. M., Raiesi, F. et al. (2013). Characterization and Potentials of Indigenous Oil-Degrading Bacteria Inhabiting the Rhizosphere of Wild Oat (Avena Fatua L.) in South West of Iran. Iran Journal of Biotechnology, Vol. 11(1), pp. 32-40, doi: 10.5812/ijb.9334.
  38. Helmy, Q., Laksmono, R., Kardena, E. (2015). Bioremediation of Aged Petroleum Oil Contaminated Soil: From Laboratory Scale to Full Scale Application. Procedia Chemistry, Vol. 14, pp. 326-333, doi: 10.1016/j.proche.2015.03.045.
  39. Iyobosa, E., Fang, Z. S., Jun, N. H., Jiehao, S., Gang, M. X. (2021). Development of a robust bacterial consortium for petroleum hydrocarbon degradation. Fresenius Environmental Bulletin, Vol. 30(3), pp. 2356-2367.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU