Design of Digitally Controlled DC-DC Boost Converter for the Operation in DC Microgrid | Journal of Engineering Sciences

Design of Digitally Controlled DC-DC Boost Converter for the Operation in DC Microgrid

Author(s): Barui T. K.1*, Goswami S.2, Mondal D.3

Affiliation(s):
1 Indian Institute of Engineering Science and Technology, Botanic Garden, 711103, Howrah, India;
2 Cognizant Technology Solutions, Unitech Infospace, DH Block (Newtown), 700156, Kolkata, India;
3 RCC Institute of Information Technology, Canal South Road, Beliaghata, 700015, Kolkata, India.

*Corresponding Author’s Address: [email protected]

Issue: Volume 7, Issue 2 (2020)

Dates:
Paper received: September 12, 2020
The final version of the paper received: December 9, 2020
Paper accepted online: December 14, 2020

Citation:
Barui T. K., Goswami S., Mondal D. (2020). Design of digitally controlled DC-DC boost converter for the operation in DC microgrid. Journal of Engineering Sciences, Vol. 7(2), pp. E7–E13, doi: 10.21272/jes.2020.7(2).e2

DOI: 10.21272/jes.2020.7(2).e2

Research Area:  MECHANICAL ENGINEERING: Computational Mechanics

Abstract. Renewable energy sources (RESs) are becoming increasingly important day by day to tranquilize the world’s energy crisis and consume fossil fuels in the lower rung. A microgrid system that assimilates clean and green energy-based sources such as solar, wind, and biogas is acquiring much prominence over the conventional grid-based power systems in this day and age. For the up and running of the inexhaustible energy sources in the AC power network, numerous conversions of the power sources occur. In the process of conversion, some amount of power is lost, which minimizes conversion efficiency. However, with the increasing use of DC loads and Distributed Energy Resources (DERs), DC Microgrid could be more beneficial than the conventional AC power system by avoiding several types of drawbacks. This paper demonstrates an efficient system of digitally controlled boost converter for the parallel operation in DC microgrid. Here, the converter of 2.5kW 400V is designed and implemented to validate its functioning in a Microgrid. The whole system has been simulated in MATLAB with an input voltage range of 220–380 V. It has been found that the designed converter can maintain the desired output voltage in the DC Busbar at and around 400 V. Finally, some simulation results have been presented to analyze the converter’s operational characteristics and effectiveness in the practical domain.

Keywords: DC Microgrid, Renewable energy, DC-DC Boost Converter, Digital Controller.

References:

  1. Lotfi, H., Khodaei, A. (2017). AC Versus DC Microgrid Planning. IEEE Transactions on Smart Grid, Vol. 8(1), pp. 296-304, doi: 10.1109/TSG.2015.2457910.
  2. Wang B., Sechilariu M., Locment F. (2012). Intelligent DC Microgrid With Smart Grid Communications: Control Strategy Consideration and Design. IEEE Transactions on Smart Grid, Vol. 3(4), pp. 2148-2156, doi: 10.1109/TSG.2012.2217764.
  3. Samanta H., Pramanik M., Das A., Bhattacharjee A., Bhattacharya K. D., Deb N. K., Sengupta S., Saha H. (2019). Development of a novel controller for DC-DC boost converter for DC Microgrid. TENCON 2019 – 2019 IEEE Region 10 Conference (TENCON), pp. 1124-1129, doi: 10.1109/TENCON.2019.8929521.
  4. Radwan A. A. A., Mohamed Y. A-R. I. (2012). Linear Active Stabilization of Converter-Dominated DC Microgrids. IEEE Transactions on Smart Grid, Vol. 3(1), pp. 203-216, doi: 10.1109/TSG.2011.2162430.
  5. Lonkar M., Ponnaluri S. (2015). An Overview of DC Microgrid Operation and Control. IREC2015 The Sixth International Renewable Energy Congress, pp. 1-6, doi: 10.1109/IREC.2015.7110892.
  6. Sarkar T., Bhattacharjee A., Samanta H., Bhattacharya K., Saha H. (2019). Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy Conversion and Management, Vol. 191, pp. 102–118, doi: 10.1016/j.enconman.2019.04.025.
  7. Nejabatkhah F., Li Y. W. (2015). Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Transactions on Power Electronics, Vol. 30(12), pp. 7072-7089, doi: 10.1109/TPEL.2014.2384999.
  8. Liu X., Wang P., Loh P. C. (2011). A Hybrid AC/DC Microgrid and Its Coordination Control. IEEE Transactions on Smart Grid, Vol. 2(2), pp. 278-286, doi: 10.1109/TSG.2011.2116162.
  9. Alassi A., Banales S., Ellabban O., Adam G., MacIver C. (2019). HVDC Transmission: Technology Review, Market Trends and Future Outlook. Renewable and Sustainable Energy Reviews, Vol. (112), pp. 530–554, doi: 10.1016/j.rser.2019.04.062.
  10. Khorsandi A., Ashourloo M., Mokhtari H. (2014). A Decentralized Control Method for a Low-Voltage DC Microgrid. IEEE Transactions on Energy Conversion, Vol. 29(4), 793-801, doi: 10.1109/TEC.2014.2329236.
  11. Strunz K., Abbasi E., Huu D. N. (2014). DC Microgrid for Wind and Solar Power Integration. IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 2(1), pp. 115-126, doi: 10.1109/JESTPE.2013.2294738.
  12. Justo J. J., Mwasilu F., Lee J., Jung J-W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, Vol. 24, pp. 387–405, doi: 10.1016/j.rser.2013.03.067.
  13. Gupta A., Kondekar P. N. (2019). An On-Chip Digital Soft-Start Circuit for Integrated DC-DC Buck Converter. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1-5, doi: 10.1109/ICCCNT45670.2019.8944561.
  14. Alexandru I. C., Mircea B. (2019). Analysis and design of a current mode buck converter with digitally controlled output voltage. 2019 International Semiconductor Conference (CAS), pp. 309-312, doi: 10.1109/SMICND.2019.8923781.
  15. SEO S-W., CHOI H. H. (2019). Digital Implementation of Fractional Order PID-Type Controller for Boost DC-DC Converter. IEEE Access, Vol. (7), pp. 142652-142662, doi: 10.1109/ACCESS.2019.2945065.
  16. Chen D., Xu L. (2012). Autonomous DC Voltage Control of a DC Microgrid With Multiple Slack Terminals. IEEE Transactions on Power Systems, Vol. 27(4), pp. 1897-1905, doi: 10.1109/TPWRS.2012.2189441.
  17. Djamel O., Dhaouadi G., Youcef S., Mahmoud M. (2019). Hardware Implementation of Digital PID Controller for DC–DC Boost Converter. 2019 4th International Conference on Power Electronics and their Applications (ICPEA), pp. 1-4. doi: 10.1109/ICPEA1.2019.8911129.
  18. Chen D., Xu L. (2011). Control and Operation of a DC Microgrid With Variable Generation and Energy Storage. IET Conference on Renewable Power Generation (RPG 2011), Vol. 26(4), pp. 2513-2522, doi: 10.1109/TPWRD.2011.2158456.
  19. Padmanaban S., Kabalci E., Iqbal A., Abu-Rub H., Ojo O. (2015). Control strategy and hardware implementation for DC-DC boost power circuit based on proportional-integral compensator for high voltage application. Engineering Science and Technology, an International Journal, Vol. 18(2), pp. 163-170, doi: 1016/j.jestch.2014.11.005.
  20. Benavides N. D., Chapman P. L. (2008). Modeling the Effect of Voltage Ripple on the Power Output of Photovoltaic Modules. IEEE Transactions on Industrial Electronics, Vol. 55(7), pp. 2638 – 2643. doi: 10.1109/TIE.2008.921442.
  21. Benda D., Vorel P. (2019). Experimental DC/DC Converter for Photovoltaic Panel with Fully Digital Control Based on Flyback Topology with Nontraditional Snubber Circuit. 2019 International Conference on Electrical Drives & Power Electronics (EDPE), pp. 120-124, doi: 10.1109/EDPE.2019.8883875.
  22. Mohod S. W., Padgavhankar A. V. (2013). Closed Loop Digital Controller of DC-DC Converter for Renewable Energy Source (PV Cell). 2013 International Conference on Renewable Energy and Sustainable Energy (ICRESE), pp. 112-116, doi: 10.1109/ICRESE.2013.6927798.
  23. Etz R., Petreus D., Moga D., Abrudean M., Patarau T. (2012). Fuzzy Digital Control for DC-DC Converters Used in Renewable Energy Systems. IFAC Proceedings Volumes, Vol. 45(21), pp. 91-96. doi: 3182/20120902-4-FR-2032.00018.
  24. Ugur A., Yilmaz M. (2019). Digital hybrid current mode control for DC–DC converters. IET Power Electronics, Vol. 12(4), pp. 891-898, doi: 10.1049/iet-pel.2018.6035.
  25. Basic Calculation of a Boost Converter’s Power Stage. Texas Instruments – https://www.ti.com/.
  26. Syed Abdul Rahman Kashif (2021). Digitally Controlled Buck Converter (https://www.mathworks.com/matlabcentral/fileexchange/27382-digitally-controlled-buck-converter), MATLAB Central File Exchange. Retrieved January 23, 2021.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU