Digestate Potential to Substitute Mineral Fertilizers: Engineering Approaches | Journal of Engineering Sciences

Digestate Potential to Substitute Mineral Fertilizers: Engineering Approaches

Author(s): Ablieieva I. Yu.1*, GeletukhaG. G.2, Kucheruk P. P.2, Enrich-Prast A.3, Carraro G.3, Berezhna I. O.1, Berezhnyi D. M.1

Affiliation(s):
1 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine,
2a, Marii Kapnist Street, 03057, Kyiv, Ukraine;
3 Linköping University, SE-581 83 Linköping, Sweden

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 1 (2022)

Dates:
Submitted: February 18, 2022
Accepted for publication: May 27, 2022
Available online: June 2, 2022

Citation:
Ablieieva I. Yu., Geletukha G. G., Kucheruk P. P., Enrich-Prast A., Carraro G., Berezhna I. O., Berezhnyi D. M. (2022). Digestate potential to substitute mineral fertilizers: Engineering approaches. Journal of Engineering Sciences, Vol. 9(1), pp. H1-H10, doi: 10.21272/jes.2022.9(1).h1

DOI: 10.21272/jes.2022.9(1).h1

Research Area:  CHEMICAL ENGINEERING: Environmental Protection

Abstract. The study aims to define the potential and technological aspects of the digestate treatment for its application as a biofertilizer. Life cycle assessment methodology was used in terms of digestate quality management. The potential of nutrients, organic carbon, and useful microelements in the digestate allows for its consideration as a mineral fertilizer substitute and soil improver. The valorization of digestate as fertilizer requires quality management and quality control. Based on the research focus, the successful soil application of digestate post-treatment technologies was analyzed. Among the different commercial options for digestate treatment and nutrient recovery, the most relevant are drying, struvite precipitation, stripping, evaporation, and membranes technology. Comparing the physical and chemical properties of the whole digestate, separated liquid, and solid liquor fractions showed that in the case of soil application of granular fertilizer, nutrients from the digestate are released more slowly than digestate application without granulation. However, realizing this potential in an economically feasible way requires improving the quality of digestate products through appropriate technologies and quality control of digestate products. To support the manufacture of quality digestate across Europe, the European Compost Network developed a concept for a pan-European quality assurance scheme.

Keywords: process innovation, adsorption isotherm, rice husk, activated carbon, crystal violet, energy efficiency.

References:

  1. Slepetiene, A., Kochiieru, M., Jurgutis, L., Minkeviciene, A., Skersiene, A., Belova, O. (2022). The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania. Land, Vol. 11(1),
    pp. 1-17, doi:10.3390/land11010133.
  2. Barlog, P., Hlisnikovsky, L., Kunzova, E. (2020). Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy, Vol. 10(3), pp. 1-16, doi: 10.3390/agronomy10030379.
  3. Wilken, D., Rauh, S., Fruhner-Weiß, R., Strippel, F., Bontempo, G., Kramer, A., Fürst, M., Wiesheu, M., Kedia, G., Chanto, C. H., Mukherjee, A., Siebert, S., Herbes, C., Kurz, P., Halbherr, V., Dahlin J., Nelles, M. (2018). Digestate as a fertilizer. Fachverband Biogas e.V. Dr. Claudius da Costa Gomez (V.i.S.d.P.), Freising, Germany.
  4. Drosg, B., Fuchs, W., Al Seadi, T., Madsen, M., Linke, B. (2015). Nutrient Recovery by Biogas Digestate Processing. IEA Bioenergy, UK.
  5. Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, Vol. 7(5), pp. 5875–5895, doi: 10.3390/su7055875.
  6. Dekker, H., Decorte, M. (2021). Statistical Report of the European Biogas Association. EBA, Brussels, Belgium.
  7. Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, Vol. 34, pp. 473-492, doi: 10.1007/s13593-013-0196-z.
  8. Coelho, J. J. J., Hennessy, A., Casey, I., Bragança, C. R. S., Woodcock, T., Kennedy, N. (2020). Biofertilisation with anaerobic digestates: A field study of effects on soil microbial abundance and diversity. Applied Soil Ecology, Vol. 147, pp. 103403, doi: 10.1016/j.apsoil.2019.103403.
  9. Bhogal, A., Taylor, M., Nicholson, F., Rollett, A., Williams, J., Newell Price, P., Chambers, B., Litterick, A., Whittingham, M. (2015). DC-Agri; field experiments for quality digestate and compost in agriculture – WP1 report. WRAP, UK.
  10. Taylor, M., Chambers, B., Litterick, A., Longhurst, P., Tyrrel, S., Gale, P., Tompkins, D. (2012). Risk-Based Guidance for BSI PAS110 Digestates in GB Agriculture. 7th European Biosolids and Organic Resources Conference. The Royal Armouries, Leeds, UK, doi: 10.13140/RG.2.1.5137.1604.
  11. Bustamante, M. A., Said-Pullicino, D., Agullo, E., Andreu, J., Paredes, C., Moral, R. (2011). Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil. Agriculture, Ecosystems & Environment, Vol. 140(1-2), pp. 80-87, doi: 10.1016/j.agee.2010.11.014.
  12. Govasmark, E., Stab, J., Holen, B., Hoornstra, D., Nesbakk, T. (2011). Chemical and microbiological hazards associated with the recycling of anaerobic digested residue intended for use in agriculture. Waste Management, Vol. 31(12), pp. 2577–2583, doi: 10.1016/j.wasman.2011.07.025.
  13. Song, Z., Fang, L., Wang, J., Zhang, C. (2019). Use of biogas solid residue from anaerobic digestion as an effective amendment to remediate Cr(VI)-contaminated soils. Environmental Science and Pollution Research, Vol. 26(3), doi: 10.1007/s11356-019-04786-y.
  14. Al Seadi, T., Lukehurst, C. (2012). Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy, UK.
  15. Dada, O., Mbohwa, C. (2018). Energy from waste: A possible way of meeting goal 7 of the sustainable development goals. 1st Africa Energy Conference. South Africa, Vol. 5, pp. 10577–10584.
  16. Ablieieva, I., Berezhna, I., Berezhnyi, D., Prast, A. E., Geletukha, G., Lutsenko, S., Yanchenko, I., Carraro, G. (2022). Technologies for Environmental Safety Application of Digestate as Biofertilizer. Ecological Engineering & Environmental Technology, Vol. 23(3), pp. 106–119, doi: 10.12912/27197050/147154.
  17. Ablieieva, I., Artyukhova, N., Krmela, J., Malovanyy, M., Berezhnyi, D. (2022). Parameters and Operating Modes of Dryers in terms of Minimizing Environmental Impact and Achieving the Sustainable Development Goals. Drying technology, Vol. 40(6), pp. 12, doi: 10.1080/07373937.2022.2081174.
  18. Siciliano, A., Limonti, C., Curcio, G. M., Molinari, R. (2020). Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability, Vol. 12(18), doi: 10.3390/su12187538.
  19. Szymanska, M., Szara, E., Wąs, A., Sosulski, T., van Pruissen, G. W., Cornelissen, R. L. (2019). Struvite—An Innovative Fertilizer from Anaerobic Digestate Produced in a Bio-Refinery. Energies, Vol. 12(2), pp. 296, doi: 10.3390/en12020296.
  20. Lorick, D., Macura, B., Ahlström, M., Grimvall, A., Harder, R. (2020). Efectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: a systematic review. Environmental Evidence, Vol. 9, pp. 27, doi: 10.1186/s13750-020-00211-x.
  21. Huliienko S. V. Korniienko Y. M., Gatilov K. O. (2020). Modern trends in the mathematical simulation of pressure-driven membrane processes. Journal of Engineering Sciences, Vol. 7(1), pp. F1-F21, doi: 10.21272/jes.2020.7(1).f1.
  22. Teglia, C., Tremier, A., Martel, J.-L. (2011). Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use. Waste Biomass Valorization, Vol. 2(1), pp. 43-58, doi: 10.1007/s12649-010-9051-5.
  23. Maucieri, C., Nicoletto, C., Caruso, C., Sambo, P., Borin, M. (2017). Effects of digestate solid fraction fertilisation on yield and soil carbon dioxide emission in a horticulture succession. Italian Journal of Agronomy, Vol. 12, pp. 116-123, doi: 10.4081/ija.2017.800.
  24. Horta, C., Carneiro, J. P. (2022). Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Applied Sciences, Vol. 12(1), doi: 10.3390/app12010248.
  25. Rigby, H., R Smith, S. (2011). New Markets for Digestate from Anaerobic Digestion. Department of Civil Environmental Engineering, London, UK.
  26. Geletukha, G., Zheliezna, T. (2021). Prospects for Bioenergy Development in Ukraine: Roadmap until 2050. Ecological Engineering & Environmental Technology, Vol. 5, pp. 73–81. doi: 10.12912/27197050/139346.
  27. Logan, M., Visvanathan, C. (2019). Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management & Research, Vol. 37(1), pp. 27–39, doi: 10.1177/0734242X1881.
  28. Pawlita-Posmyk, M., Wzorek, M. (2018). Biogas production from the perspective of sustainable development. Economic and Environmental Studies, Vol. 18(3), pp. 1043-1057, doi: 10.25167/ees.2018.47.1.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU