Efficiency Analysis of Tracking and Stationary Solar Panel Modes Against Solar Radiation

Author(s): Samaulah H.1*, Basir Y.1, Helmi M.1, Faturrizky F.1, Sugawara A.2


1 Tridinanti University of Palembang, 30129 South Sumatera, Indonesia;
2 Niigata University, 950-2181 Niigata, Japan

*Corresponding Author’s Address: [email protected]

Issue: Volume 5; Issue 1 (2018)

Paper received: April 4, 2018
The final version of the paper received: May 24, 2018
Paper accepted online: May 27, 2018

Samaulah H. Efficiency analysis of tracking and stationary solar panel modes against solar radiation / H. Samaulah, Y. Basir, M. Helmi, F. Faturrizky, A. Sugawara // Journal of Engineering Sciences. – Sumy : Sumy State University, 2018. – Volume 5, Issue 1. – P. H23-H28.

DOI: 10.21272/jes.2018.5(1).h4

Research Area: CHEMICAL ENGINEERING: Environmental Protection

Abstract. The utilization of solar energy sources is done by using photovoltaic (solar panels). The energy emitted by the sun is fluctuating. This change in radiation energy will also affect the output of solar panels. The relationship of change is what will be measured, observed and proven in this study. The observations are made using a gauge called the solar power meter, where this device can read the amount of solar radiation energy in the W/m2 unit. While the output to be measured is the output power generated by the solar panel itself. Measurement in this study was done using two modes; i. e. stationary mode and tracking mode. The stationary mode is done by placing the solar panel face with slope and azimuth in a predetermined direction, while the tracking mode is to place the solar panel face exactly 90° to the sun. Evidently by placing the solar panels to keep the sun coming up, it can achieve efficiency up to 14.1 % compared to stationing solar panels stationed 75° to the north which can only achieve efficiency of 13.7 %.

Keywords: radiation energy, photovoltaic, efficiency, solar panel.


  1. Arbab, H., Jazi, B., & Rezagholizadeh, M. (2009). A computer tracking system of solar dish with two-axis degree freedoms based on picture processing of bar shadow. Renew Energy, 34, 1114–1118.
  2. Arismunandar, W. (1995). Teknologi rekayasa surya. Jakarta, Vol. 1, pp. 17.
  3. Ghosh, H. R., Bhowmik, N. C., & Hussain, M. (2010). Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka. Renew Energy, 35, 1292–1297.
  4. Hoesin, H. (2011). Memahami radiasi matahari dari enam hal, menuju langit biru dan teknologi pemanfaatanya. Accessed online at September 9th, 2017.
  5. Yohana, E. (2010). Pengaruh suhu permukaan photovoltaic module 50 W peak terhadap daya keluaran yang dihasilkan menggunakan reflektor dengan variasi sudut reflektor 0°, 50°, 60°, 70°, 80°. Jurnal Universitas Diponegoro, Semarang, Universitas Diponegoro.
  6. Raditya, G. (2015). Faktor yang mempengaruhi kinerja solar panel. Accessed online at August 30th, 2017.
  7. Sidopekso, S., & Febtiwiyanti , A. E. (2010). Studi peningkatan output modul surya dengan menggunakan reflektor. Jurnal Universitas Negeri Jakarta. Jakarta: Universitas Negeri Jakarta.
  8. Soeparman, S. (2015). Teknologi tenaga surya. Malang, Vol. 1.
  9. Sudibyo, M. (2012). Menimbang ulang penyatuan zona waktu Indonesia. Accessed online.
  10. Zahr, M., Friedrich, D., & Kloth, T.Y. (2010) Bionic photovoltaic panels bio-inspired by green leaves. Journal of Bionic Engineering, Vol. 7, pp. 284–293.

Full Text