Electro-Fermentation for Biopolymers Production: Trends Determination with Bioinformatics Data Analysis | Journal of Engineering Sciences

Electro-Fermentation for Biopolymers Production: Trends Determination with Bioinformatics Data Analysis

Author(s): Chernysh Y.1*, Bataltsev Y.1, Shen X.-J.2,
Bohdanovych O.1, Yakhnenko O.1

Affiliation(s):
1 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, 314001, Jiaxing, China

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 2 (2022)

Dates:
Submitted: June 17, 2022
Accepted for publication: September 5, 2022
Available online: September 8, 2022

Citation:
Chernysh, Y., Bataltsev, Y., Shen, X.-J., Bohdanovych, O., Yakhnenko, O. (2022). Electro-fermentation for biopolymers production: trends determination with bioinformatics data analysis. Journal of Engineering Sciences, Vol. 9(2), pp. H1-H8, doi: 10.21272/jes.2022.9(2).h1

DOI: 10.21272/jes.2022.9(2).h1

Research Area:  CHEMICAL ENGINEERING: Environmental Protection

Abstract. The paper is devoted to the study of directions of application of combined systems for obtaining biofuels and biopolymers using electro-oxidative processes, namely electro-fermentation. In the course of the work, a step-by-step methodology of research is shown, and the relationship between different bioinformatic databases in their combined use is described, which made it possible to identify trends in electro-fermentation systems with the production of bio-based products. A review of possible electro-fermentation systems with major bio-product production was performed. The possibility of including anaerobic producers of organic acids, namely lactic acid, for the needs of biopolymerization, with bioinformatic databases was substantiated. The model of the process of anaerobic fermentation with the production of organic acids for biopolymerization has been formed. The analysis of bioinformatic databases showed that the strains Anaerotignum propionicum X2, isolated from silty bottom sediments, and Anaerotignum propionicum 19acry 3, isolated from an operating anaerobic reactor, have the most significant indicators of lactate productivity. The conditions for their cultivation with an indication of nutrient media and modification of their composition are considered.

Keywords: biofuels, biopolymers, electro-fermentation, bioinformatic databases, nutrient medium.

References:

  1. Armistead, S. J., Smith, C. C., Staniland, S. S. (2022). Sustainable biopolymer soil stabilization in saline rich, arid conditions: a ‘micro to macro’ approach. Scientific Reports, Vol. 12(1), 2880. https://doi.org/10.1038/s41598-022-06374-6.
  2. Saleh, A. K., El-Gendi, H., Soliman, N. A., El-Zawawy, W. K., Abdel-Fattah, Y. R. (2022). Bioprocess development for bacterial cellulose biosynthesis by novel Lactiplantibacillus plantarum isolate along with characterization and antimicrobial assessment of fabricated membrane. Scientific Reports, Vol. 12(1), 2181. https://doi.org/10.1038/s41598-022-06117-7.
  3. Wang, Q., Chen, W., Zhu, W., McClements, D. J., Liu, X., Liu, F. (2022). A review of multilayer and composite films and coatings for active biodegradable packaging. Npj Science of Food, Vol. 6(1), 18. https://doi.org/10.1038/s41538-022-00132-8.
  4. Yamada, M., Kawamura, M., Yamada, T. (2022). Preparation of bioplastic consisting of salmon milt DNA. Scientific Reports, Vol. 12(1), 7423. https://doi.org/10.1038/s41598-022-11482-4.
  5. Banu, J. R., Kumar, M. D., Gunasekaran, M., Kumar, G. (2019). Biopolymer production in bio electrochemical system: Literature survey. Bioresource Technology Reports, Vol. 7, 100283. https://doi.org/10.1016/j.biteb.2019.100283.
  6. Pradhan, R. A., Rahman, S. S., Qureshi, A., Ullah, A. (2021). Biopolymers. In Biopolymers and their Industrial Applications, pp. 281-303. Elsevier. https://doi.org/10.1016/B978-0-12-819240-5.00012-2.
  7. Schulz, K., Hunger, S., Brown, G. G., Tsai, S. M., Cerri, C. C., Conrad, R., Drake, H. L. (2015). Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil. The ISME Journal, Vol. 9(8), pp. 1778-1792. https://doi.org/10.1038/ismej.2014.262.
  8. Ding, C., Yang, K.-L., He, J. (2016). Biological and fermentative production of hydrogen. In Handbook of Biofuels Production, pp. 303-333. Elsevier. https://doi.org/10.1016/B978-0-08-100455-5.00011-4.
  9. Hauke, P., Klingenhof, M., Wang, X., De Araújo, J. F., Strasser, P. (2021). Efficient electrolysis of 5-hydroxymethylfurfural to the biopolymer-precursor furandicarboxylic acid in a zero-gap MEA-type electrolyzer. Cell Reports Physical Science, Vol. 2(12), 100650. https://doi.org/10.1016/j.xcrp.2021.100650.
  10. Bajracharya, S., Sharma, M., Mohanakrishna, G., Dominguez Benneton, X., Strik, D. P. B. T. B., Sarma, P. M., Pant, D. (2016). An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renewable Energy, Vol. 98, pp. 153-170. https://doi.org/10.1016/j.renene.2016.03.002.
  11. Zheng, T., Li, J., Ji, Y., Zhang, W., Fang, Y., Xin, F., Dong, W., Wei, P., Ma, J., Jiang, M. (2020). Progress and Prospects of Bioelectrochemical Systems: Electron Transfer and Its Applications in the Microbial Metabolism. Frontiers in Bioengineering and Biotechnology, Vol. 8, 10. https://doi.org/10.3389/fbioe.2020.00010.
  12. Kumar, P., Chandrasekhar, K., Kumari, A., Sathiyamoorthi, E., Kim, B. (2018). Electro-Fermentation in Aid of Bioenergy and Biopolymers. Energies, Vol. 11(2), 343. https://doi.org/10.3390/en11020343.
  13. Brodie, E. L., Joyner, D. C., Faybishenko, B., Conrad, M. E., Rios-Velazquez, C., Malave, J., Martinez, R., Mork, B., Willett, A., Koenigsberg, S., Herman, D. J., Firestone, M. K., Hazen, T. C. (2011). Microbial community response to addition of polylactate compounds to stimulate hexavalent chromium reduction in groundwater. Chemosphere, Vol. 85(4), pp. 660-665. https://doi.org/10.1016/j.chemosphere.2011.07.021.
  14. Yang, T. H., Park, S. J., Lee, E. J., Kang, H. O., Kim, T. W., Lee, S. H. (2010). Recombinant ralstonia eutropha capable of producing polylactic acid or polylatic acid copolymer, and method for producing polylactic acid or polylatic acid copolymer using same. Patent No. WO2010090436A2.
  15. Chernysh, Y., Yakhnenko, O., Chubur, V., Roubík, H. (2021). Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Applied Sciences, Vol. 11(4), 1575. https://doi.org/10.3390/app11041575.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU