Author(s): Shulga I.1, Kyzym M.2, Kotliarov Y.2*, Khaustova V.2
Affiliation(s):
1 State Enterprise “Ukrainian State Research Institute for Carbochemistry”, 7, Vesnina St., 61023, Kharkiv, Ukraine;
2 Research Center for Industrial Problems of Development of the National Academy of Sciences of Ukraine, 1a, Inzhenernyi Lane, 61166, Kharkiv, Ukraine
*Corresponding Author’s Address: [email protected]
Issue: Volume 11, Issue 2 (2024)
Dates:
Submitted: June 1, 2024
Received in revised form: August 5, 2024
Accepted for publication: September 2, 2024
Available online: September 14, 2024
Citation: Shulga I., Kyzym M., Kotliarov Y., Khaustova V. (2024). Improvement of the ecological efficiency of synthetic motor fuel production in Ukraine. Journal of Engineering Sciences (Ukraine), Vol. 11(2), pp. H11–H25. https://doi.org/10.21272/jes.2024.11(2).h2
DOI: 10.21272/jes.2024.11(2).h2
Research Area: Environmental Protection
Abstract. Solving the problem of improving energy security is one of Ukraine’s challenges in modern conditions. One of the ways to solve this problem is to organize the production of synthetic motor fuel from the available domestic carbon-containing raw materials. The relevance of developing the production of synthetic motor fuel in Ukraine from non-oil raw materials is associated with the shortage of deposits of traditional crude hydrocarbon and the destruction of the last processing capacities due to russian aggression. The article aims to substantiate the possibility of efficiently producing synthetic motor fuels from the available mineral hydrocarbon raw materials. Analyzing the existing deposits of hydrocarbons allowed for determining low-metamorphosed coal as the most expedient raw material base. A comparative analysis of various technologies made it possible to suggest the organization of the production of synthetic motor fuel through indirect hydrogenation, followed by fuel synthesis in the Fischer–Tropsch process. Calculations performed for low-metamorphosed Ukrainian coal showed the technical and environmental efficiency of the hydrogen enrichment of synthesis gas. To enrich synthesis gas with hydrogen, it was proposed to cooperate with producing synthetic motor fuel with coal mines (suppliers of raw materials, including methane for the production of additional hydrogen) or coke ovens and by-product enterprises that produce hydrogen-rich coke oven gas.
Keywords: energy security, alternative fuels, coal, gasification, hydrogen, CO2 emission.
References:
- Demirbas, A. (2003). Current advances in alternative motor fuels. Energy Exploration & Exploitation, Vol. 21(5-6), pp. 475–487.
- Khaustova, V., Hubarieva, I., Kostenko, D., Salashenko, T., Mykhailenko, D. (2023). Rationale for the creation and characteristics of the national high-tech production of motor biofuel. In: Zaporozhets, A. (eds) Systems, Decision and Control in Energy V. Studies in Systems, Decision and Control, Vol. 481, pp. 569–583. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-031-35088-7_31
- Stranges, AN (2024). Overview of the Synthetic Fuel Industry. In: Petroleum from Coal, pp. 1–20. Brill, Amsterdam. https://doi.org/10.1163/9789004690912_002
- Willauer, H., Hardy, D. (2020). Synthetic Fuel Development. In: Future Energy (Third Edition): Improved, Sustainable and Clean Options for our Planet, pp. 561–580. Elsevier, Amsterdam, Netherlands https://doi.org/10.1016/B978-0-08-102886-5.00026-8
- Ram, V., Salkuti, S.R. (2023). An overview of major synthetic fuels. Energies, Vol. 16(6), 2834. https://doi.org/10.3390/en16062834
- Kyzym, M., Khaustova, V., Shpilevskyi, V., Salashenko, T., Kotliarov, Y., Shulga, I., Kostenko, D., Shpilevskyi, O. (2022). Technical and Economic Principles of Creating a Sub-Sector for the Production of Liquid Synthetic Fuel in Ukraine. Liburkina Publishing House, Kharkiv, Ukraine. Available online: https://ndc-ipr.org/media/publications/files/Motor_Fuel_Mono.pdf
- Mori, S., Nishiura, O., Oshiro, K., Fujimori, S. (2024). Synthetic fuels mitigate the risks associated with rapid end-use technology transition in climate mitigation scenarios. Global Environmental Change Advances, Vol. 2, 100009. https://doi.org/10.1016/j.gecadv.2024.100009
- Jones, J.C. (2012). Siemens and gasification technology. International Journal of Mechanical Engineering Education, Vol. 37(1), pp. 1–2. https://doi.org/10.7227/IJMEE.37.1.1
- Schellberg, W., Ullrich, N., Bakker, W.T., Leferink, R.G.I. (1997). The PRENFLO gasification process, design and materials experience. Materials at High Temperatures, Vol. 14(2), pp. 159–163. https://doi.org/10.1080/09603409.1997.11689540
- Longwell, J. (1997). Texaco Gasification Process. In: Holm, F.W. (eds.) Mobile Alternative Demilitarization Technologies. NATO ASI Series, Vol. 12, pp. 183–194. Kluwer Academic Publisher, Springer Nature, Berlin, Germany. https://doi.org/10.1007/978-94-011-5526-7_11
- Yang, D., Wang, L., Zhao, Y., Kang, Z. (2021). Investigating pilot test of oil shale pyrolysis and oil and gas upgrading by water vapor injection. Journal of Petroleum Science and Engineering, Vol. 196(1), 108101. https://doi.org/10.1016/j.petrol.2020.108101
- Bilets, D., Miroshnichenko, D., Karnozhitskiy, P. (2020). Gasification of coke-plant wastes. Petroleum and Coal, Vol. 62(3), pp. 1121–1130.
- Awad, O.I., Mamat, R., Ali, O.M., Sidik, N.A.C., Yysaf, T., Kadigrama, K., Kettner, M. (2018). Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, Vol. 82(3), pp. 2586–2605. https://doi.org/10.1016/j.rser.2017.09.074
- Goldemberg, J. (2016). The ethanol program in Brazil. Environmental Research Letters, Vol. 1(1), 014008. https://doi.org/10.1088/1748-9326/1/1/014008
- da Silva Pinto, R.L., Vieira, A.C., Scarpetta, A., Marques, F.S., Jorge, R.M.M., Bail, A., Jorge, L.M.M., Corazza, M.L., Ramos, L.P. (2022). An overview on the production of synthetic fuels from biogas. Bioresource Technology Reports, Vol. 18(6), 101104. https://doi.org/10.1016/j.biteb.2022.101104
- Tao, J., Chen, C., Wang, J., Li, J., Zhou, S., Chen, C., Yan, B., Guo, W., Cheng, Z., Chen, G. (2023). Liquid biofuel powering the sustainable transport with a low-carbon emission: A review. Progress in Energy, Vol. 5(4), 042003. https://doi.org/10.1088/2516-1083/ad09ef
- Gupta, P.K., Kumar, V., Maity, S., Datta, S., Gupta, G.K. (2022). Review on conversion of biomass to liquid fuels and methanol through indirect liquefaction route. Chemistry Europe, Vol. 7(48). https://doi.org/10.1002/slct.202203504
- Singh, H., Li, C., Cheng, P., Wang, X., Liu, Q. (2022). A critical review of technologies, costs, and projects for production of carbon-neutral liquid e-fuels from hydrogen and captured CO2. Energy Advances, Vol. 9, pp. 580–605. https://doi.org/10.1039/D2YA00173J
- Zuberi, M.J.S., Shehabi, A., Rao, P. (2024). Cross-sectoral assessment of CO2 capture from US industrial flue gases for fuels and chemicals manufacture. International Journal of Greenhouse Gas Control, Vol. 135, 104137. https://doi.org/10.1016/j.ijggc.2024.104137
- Nemmour, A., Inayat, A., Janajreh, I., Ghenai, C. (2023). Green hydrogen-based E-fuels (E-methane, E- methanol, E-ammonia) to support clean energy transition: A literature review. International Journal of Hydrogen Energy, Vol. 48(75), pp. 29011–29033. https://doi.org/10.1016/j.ijhydene.2023.03.240
- Mohankumar, A., Gowtham, R., Suresh Kumar, K. (2023). Revolutionizing plastic waste management: fuel production from discarded plastics. Irish Interdisciplinary Journal of Science & Research, Vol. 7(3), pp. 69–80. https://doi.org/10.46759/IIJSR.2023.7308
- Djandja, O.S., Chen, D., Yin, L.-X., Wang, Z.-C., Duan, P.G. (2022). Roadmap to low-cost catalytic pyrolysis of plastic wastes for production of liquid fuels. In: Fang, Z., Smith Jr., R.L., Xu, L. (Eds.) Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste. Biofuels and Biorefineries, Vol 11, pp. 75–100. Springer, Singapore. https://doi.org/10.1007/978-981-16-6162-4_3
- Dhakal, M., Labh, S.K., Pandey, L., Bohara, M., Thapa, D., Bohara, M., Basnet, N. (2023). Green and sustainable pyrolysis: conversion of plastic solid waste into liquid fuel. Technical Journal, Vol. 3(1), pp. 45–49. https://doi.org/10.3126/tj.v3i1.61953
- Kholidah, N., Faizal, M., Said, M. (2018). Polystyrene plastic waste conversion into liquid fuel with catalytic cracking process using Al2O3 as catalyst. Science & Technology Indonesia, Vol. 3(1), pp. 1–6. https://doi.org/10.26554/sti.2018.3.1.1-6
- Narksri, P., Angnanon, S., Guntasub, J., Wijitrattanatri, K., Kingputtapong, S., Phumpradit, S., Hinchiranan, N. (2021). Production of alternative liquid fuels from catalytic hydrocracking of plastics over Ni/SBA-15 catalyst. Materials Today: Proceedings, Vol. 57(3), pp. 1040–1047. https://doi.org/10.1016/j.matpr.2021.09.048
- Vinnichenko, V., Shul’ga, I., Saffiotti, P. (2023). Ecological feasibility of pyrolysis in comparison with the incineration of municipal solid waste. AIP Conference Proceedings, Vol. 2490(1), 050006. https://doi.org/10.1063/5.0151894
- Oodith, Y., Mohammadi, A.H. (2018). An Overview of Oil Sand (Tar Sand) Extraction and Processing. In: ENCH4PP: Petroleum and Synthetic Fuel Proceeding. University of Kwazulu-Natal, Durban, South Africa. https://doi.org/10.13140/RG.2.2.30533.70889
- Mets, B., Lopp, M., Uustaiu, J.M., Muldma, K., Niidu, A., Kaldas, K. (2023). A two-step model for assessing the potential of shale-derived chemicals by oxidation of kukersite. Oil Shale, Vol. 40(4), pp. 344–362. https://doi.org/10.3176/oil.2023.4.04
- Flores, R.M. (2014). Coal as Multiple Sources of Energy. In: Coal and Coalbed Gas: Fueling the Future, pp. 41–96. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-12-396972-9.00002-1
- Kirk, F. (1998). Twentieth century industry: Obsolescence and change. A case study: The ICI coal to oil plant and its varied uses. Industrial Archaeology Review, Vol. 20(1), pp. 83–90. https://doi.org/10.1179/iar.1998.20.1.83
- Ismael, M.A., Rosli, M.A.F., Aziz, A.R.A., Mohammed, S.E., Opatola, R.A., El-Adawy, M. (2024). Gas to Liquid (GTL) role in diesel engine: Fuel characteristics and emission: A review. Cleaner Engineering and Technology, Vol. 18, 100706. https://doi.org/10.1016/j.clet.2023.100706
- Shulga, I. (2014). Processes of Thermochemical Coal Processing. In: Coke Chemist’s Handbook (3rd Edn.). INZhEK Publishing House, Kharkiv, Ukraine.
- Kovalskyi, V., Zubchenko, O., Boguslav, M. (2006). Oil shale for energy chemistry Ukraine. Proceedings of National Aviation University, Vol. 28(2), pp. 139–144. https://doi.org/10.18372/2306-1472.28.1327
- Sorokin, E.L. (2019). The Development of the Scientific Foundations of the Internal Structure and Properties of Coal to Expand the Coking Raw Material Base. DSc. thesis, National Metallurgical Academy of Ukraine, Dnipro, Ukraine.
- van de Loosdrecht, J., Botes, F.G., Ciobica, I.M., Ferreira, A., Gibson, P., Moodley, D.J., Saib, A.M., Visagie, J.L., Weststrate, C.J., Niemantsverdriet J.W. (2013). Fischer–Tropsch Synthesis: Catalysts and Chemistry. In: Comprehensive Inorganic Chemistry II (Second Edition), pp. 525–557. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-08-097774-4.00729-4
- Gary, J.H., Handwerk, J.H., Kaiser, M.J., Geddes, D. (2007). Petroleum Refining: Technology and Economics (5th Edn.). CRC Press, Boca Raton, FL, USA. https://doi.org/10.4324/9780203907924
- Saranchuk, V., Ilyashov, M., Oshovsky, V., Biletsky, V. (2008). Fundamentals of Chemistry and Physics of Fossil Fuels. Eastern Publishing House, Donetsk, Ukraine.
- Miroshnychenko, D., Miroshnychenko, I., Shulga, I., Balayeva, Y., Bohoyavlenska, O. (2020). Method of coke production. Patent of Ukraine, No. 144110.
- Mitchell, G.D. (2008). Direct Coal Liquefaction. In: Applied Coal Petrology, pp. 145–171. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-08-045051-3.00006-3
- Mishra, A., Gautam, S., Sharma, T. (2018). Effect of operating parameters on coal gasification. International Journal of Coal Science & Technology, Vol. 5(2), pp. 113–125. https://doi.org/10.1007/s40789-018-0196-3
- Dieterich, V., Buttler, A., Hanel, A. Spliethoff, H., Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer-Tropsch-fuels: A review. Energy Environmental Science, Vol. 13, pp. 3207–3252. https://doi.org/10.1039/d0ee01187h
- Alsunousi, M., Kayabasi, E. (2024). The role of hydrogen in synthetic fuel production strategies. International Journal of Hydrogen Energy, Vol. 54, pp. 1169–1178. https://doi.org/10.1016/j.ijhydene.2023.11.359
- Gradassi, M., Green, N.W. (1995). Economics of natural gas conversion processes. Fuel Processing Technology, Vol. 42(2–3), pp. 65–83. https://doi.org/10.1016/0378-3820(94)00094-A
- Chen, W.-H, Chen, C.-Y. (2020). Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Applied Energy, Vol. 258, 114078. https://doi.org/10.1016/j.apenergy.2019.114078
- Moral, G., Ortiz-Imedio, R., Ortiz, A., Gorri, D., Ortiz, I. (2022). Hydrogen recovery from coke oven gas. Comparative Analysis of Technical Alternatives, Industrial & Engineering Chemistry Research, Vol. 61(18), pp. 6106–6124. https://doi.org/10.1021/acs.iecr.1c04668
- Kravchenko, S., Turkina, O., Chaplyanko, S., Starovoit, A. (2022). Analysis of the volume of coke production and quality in 2020 at Ukrainian coke plants. Coal Chemical Journal, Vol. 4, pp. 16–21. https://doi.org/10.31081/1681-309X-2022-0-4-16-21
- Kravchenko, S., Starovoit, A., Turkina, O. (2022). Analysis of the volume of coke oven gas production by Ukrainian coke plants in 2020. Coal Chemical Journal, Vol. 6, pp. 13–17. https://doi.org/10.31081/1681-309X-2022-0-6-13-17
- Privalov, V., Sachsenhofer, R., Panova, O., Izart, A. (2011). An unconventional gas future for the Donets coal basin. Geologist of Ukraine, Vol. 2(6), pp. 152–156.
© 2024 by the author(s).
This work is licensed under Creative Commons Attribution-Noncommercial 4.0 International License