Improvement of the Physical and Mechanical Properties of the Cutting Tool by Applying Wear-resistant Coatings Based on Ti, Al, Si, and N | Journal of Engineering Sciences

Improvement of the Physical and Mechanical Properties of the Cutting Tool by Applying Wear-resistant Coatings Based on Ti, Al, Si, and N

Author(s): Hovorun T.1*, Khaniukov K.1, Varakin V.1, Pererva V.1, Vorobiov S.2, Burlaka А.1, Khvostenko R.1

Affiliation(s):
1 Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine;
2 Institute of Physics, P. J. Šafárik University in Košice, 2, Šrobárova St., 041 54 Košice, Slovakia.

*Corresponding Author’s Address: hovorun@pmtkm.sumdu.edu.ua

Issue: Volume 8, Issue 2 (2021)

Dates:
Submitted: August 25, 2021
Accepted for publication: December 7, 2021
Available online: December 11, 2021

Citation:
Hovorun T., Khaniukov K., Varakin V., Pererva V., Vorobiov S., Burlaka А., Khvostenko R. (2021). Improvement of the physical and mechanical properties of the cutting tool by applying wear-resistant coatings based on Ti, Al, Si, and N. Journal of Engineering Sciences, Vol. 8(2), pp. C13-C23, doi: 10.21272/jes.2021.8(2).c3

DOI: 10.21272/jes.2021.8(2).c3

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. From the great variety of methods to improve the efficiency of cutting tools, it is necessary to highlight the methods of applying wear-resistant coatings, which in recent years are increasingly used. Applying wear-resistant coatings on the cutting tool can significantly increase its efficiency and intensify machining modes. Mechanisms of strengthening the wear-resistant coating for materials have been analyzed under the impact of technological parameters of coating condensation process on its structure parameters and mechanical properties, formation of single and multi-element coatings based on titanium nitrides, aluminum, and silicon, the transformation of coating properties by obtaining complex coatings, and principles formation of complex coatings designed for different cutting tools. The influence of the coating on the mechanical properties of high-speed steel is shown. In the magnetron sputtering coatings on P6M5 steel samples, the microhardness of the coatings is TiN – 20–24 GPa, AlN – up to 16 GPa, TiAlN – up to 35 GPa, AlTiN – up to 32 GPa, TiAlSiN – 32–37 GPa, including while the microhardness of the substrate of steel P6M5 – 6–9 GPa. The microhardness of TiAlN and TiAlSiN coatings applied on an instrumental basis is 1,5 – 1,9 times higher than the microhardness of TiN, AlN coatings. It was found that the wear intensity of P6M5 steel without coating is 6 times higher than with AlTiN, TiAlN, and TiAlSiN coating, 3 times higher than with TiN and AlN coating. The coated tool is characterized by increased reliability and higher stability and allows the processing process with higher cutting modes.

Keywords: coating, cutting tool, structure, properties, wear resistance.

References:

  1. Möhring, H.-Ch., Kushner, V., Storchak, M., Stehle, Th. (2018). Temperature calculation in cutting zones. Manufacturing Technology, Vol. 67 (1), рр. 61–64, doi: 10.1016/j.cirp.2018.03.009.
  2. Panda, A., Dyadyura, K., Hovorun, T., Dunaeva, M., Pandová, I. (2019). Nanostructured wear-resistant coatings based on refractory metals nitrides: Physical-mechanical properties and structural-phase state. Management and Production Engineering Review, Vol. 10(4), рр. 133–139, doi: 10.24425/mper.2019.131453.
  3. Pogrebnjak, A. D., Lisovenko, M. A., Turlybekuly, A., Buranich, V. V. (2021). Protective coatings with nanoscale multilayer architecture: Current state and main trends. Physics-Uspekhi, Vol. 64(3), рр. 253–279, doi: 10.3367/UFNe.2020.08.038823.
  4. Vereschaka, A. A., Vereshchaka, A. S., Mgaloblishvili, O., Morgan, M. N., Batako, D. L. (2014). Nano-scale multilayered-composite coatings for the cutting tools. The International Journal of Advanced Manufacturing Technology, Vol. 72(1-4), рр. 303–317, doi: 10.1007/s00170-014-5673-2.
  5. Pimenov, D. Yu., Mia, M., Gupta, M. K., Machado, A. R., Tomaz, І. V., Sarikaya, M., Wojciechowski, S., Mikolajczyk, T., Kapłonek, W. (2021). Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. Journal of Materials Research and Technology, Vol. 11, рр. 719–753, doi: https://doi.org/10.1016/j.jmrt.2021.01.031.
  6. Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., Doll, G. L., Murray, C. E., Stoessel, C. H., Martinu, L. (2018). Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. A, Vol. 36, рр. 020801, doi: 10.1116/1.5011790.
  7. Torvik, P., Langley, B. (2015). Material properties of hard coatings developed for high damping. Proceedings of the 51st AIAA/SA/ASEE Joint Propulsion Conference (Orlando, Florida, USA, July 29, 2015), doi: 10.2514/6.2015-4195.
  8. Hovorun, T. P., Pylypenko, O. V., Berladir, K. V., Dyadyura, K. O., Dunaeva, M. N., Vorobiov, S. I., Panda, A. (2019). Physical-mechanical properties and structural-phase state of nanostructured wear-resistant coatings based on nitrides of refractory metals Ti and Zr. Funct. Mater., Vol. 26 (3), рр. 548−555, doi: https://doi.org/10.15407/fm26.03.548.
  9. Zaulychny, Ya. V., Hignjak, V. G., Harchenko, N. A., Hоvоrun, Т. P., Hignjak, О. V., Dolgikh, V. Y. (2016). Influence of interatomic interaction processes on the mechanical properties of carbide coatings based on Ti, V and Cr, obtained by diffusion metallization. J. Nano- Electron. Phys, Vol. 8(4(1)), 04008, doi: 10.21272/jnep.8(4(1)).04008.
  10. Kravchenko, Y. O., Coy, E., Peplińska, B., Iatsunskyi, I., Załęski, K., Kempiǹski, M., Beresnev, V. M., Pshyk, A. V., Pogrebnjak, A. D. (2020). Micro-mechanical investigation of (Al50Ti50)N coatings enhanced by ZrN layers in the nanolaminate architecture. Applied Surface Science, Vol. 534, 147573, doi: 10.1016/j.apsusc.2020.147573.
  11. Hоvоrun, Т. P., Pylypenko, O. V., Hovorun, M. V., Dyadyura, K. O. (2017). Methods of obtaining and properties of wear-resistant coatings based on Ti and N and Ti, Al and N. J. Nano- Electron. Phys, Vol. 9(2), 02026, doi: 10.21272/jnep.9(2).02026.
  12. Wu, Z., Wu, Y., Wang, Q. (2019). Comparative investigation on structure evolution of ZrN and CrN coatings against ion irradiation. Heliyon, Vol. 5, e01370, doi: 10.1016/j.heliyon.2019.e01370.
  13. Vereschaka, A., Tabakov, V., Grigoriev, S., Aksenenko, A., Sitnikov, N., Oganyan, G., Shevchenko, S. (2019). Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN-(Zr, Al, Si)N coatings. Surface and Coatings Technology, Vol. 357, рр. 218–234, doi: 10.1016/j.surfcoat.2018.09.087.
  14. Ashmarin, A. A., Betsofen, S. Y., Petrov, L. M., Lebedev, M. A. (2020). Effect of bias voltage on the texture of the TiN and ZrN coatings deposited by vacuum ion-plasma method. IOP Conference Series: Materials Science and Engineering, Vol. 889(1), 012019, doi: 10.1088/1757-899X/889/1/012019.
  15. Vereschaka, A., Volosova, M., Chigarev, A., Sitnikov, N., Ashmarin, A., Sotova, C., Lytkin, D. (2020). Influence of the thickness of a nanolayer composite coating on values of residual stress and the nature of coating wear. Coatings, Vol. 10(1), 63, doi: 10.3390/coatings1001006.
  16. Maksakova, O. V., Simoẽs, S., Pogrebnjak, A. D., Bondar, O. V., Kravchenko, Y. O., Koltunowicz, T. N., Shaimardanov, Z. K., Maksakova, O. V. (2019). Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties. J. Alloy. Compd, Vol. 776, рр. 679–690, doi: 10.1016/j.jallcom.2018.10.342.
  17. Brus, V. V. (2012). Open-circuit analysis of thin film heterojunction solar cells. Solar Energy, Vol. 86(5), рр. 1600–1604, doi: 10.1016/j.solener.2012.02.022.
  18. Zheng, Y., Chen, C.-H., Pearlman, H., Flanery, M., Bonner, R. (2015). Effect of porous coating on condensation heat transfer. 9th Boiling and Condensation Conference, pp. 1–9. Available online: https://www.1-act.com/wp-content/uploads/2015/05/Zheng-Effect-of-Porous-Media-Coating-on-Condensation-Heat-Transfer.pdf
  19. Shayestehaminzadeh, S., Tryggvason, T. K., Karlsson, L., Olafsson, S., Gudmundsson, J. T. (2013). The properties of TiN ultra-thin films grown on SiO2 substrate by reactive high power impulse magnetron sputtering under various growth angles. Thin Solid Films, Vol. 548, рр. 354-357, doi: 10.1016/j.tsf.2013.09.025.
  20. Pogrebnjak, A. D., Ivasishin, O. M., Beresnev, V. M. (2016). Arc-evaporated nanoscale multilayer nitride-based coatings for protection against wear, corrosion, and oxidation. Usp. Fiz. Met., Vol. 17(1), рр. 1–28, doi: https://doi.org/10.15407/ufm.17.01.001.
  21. Mazur, M. P., Vnukov, Yu. M., Dobroskok, V. L., Zaloga, V. O., Novosiolov, Yu. K., Yakubov, F. Ya. (2000). Fundamentals of Materials Cutting. Novyi Svit, Lviv, Ukraine.
  22. Zhao, B. Y.-H., Liao, X.-Zh., Cheng, S., Ma, E., Zhu, Y. T. (2006). Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater., Vol. 18, рр. 2280–2283, doi: 10.1002/adma.200600310.
  23. Guillaumot, A., Lapostolle, F., Langlade, C., Billard, A., Oliveira, J. C., et al. (2010). Influence of substrate biasing on (AI, Ti)N thin films deposited by a hybrid HiPIMS/DC sputtering process. IEEE Transactions on Plasma Science, Vol. 38 (11), pp. 3040-3045. doi: ⟨10.1109/TPS.2010.2052931⟩.
  24. Malvajerdi, S. S., Malvajerdi, A. S., Ghanaatshoar, M., Habibi, M. Jahdi, H. (2019). TiCrN-TiAlN-TiAlSiN-TiAlSiCN multi-layers utilized to increase tillage tools useful lifetime. Scientific Reports, Vol. 9, 19101, doi: https://doi.org/10.1038/s41598-019-55677-8.
  25. Liu, H., Yang F.-C., Tsai Y.-J., et al. (2018). Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, Vol. 358, рр. 577–585, doi: 10.1016/j.surfcoat.2018.11.069.
  26. Kumar, C. S., Patel, S. K. (2019). Effect of duplex nanostructured TiAlSiN/TiSiN/TiAlN-TiAlN and TiAlN-TiAlSiN/TiSiN/TiAlN coatings on the hard turning performance of Al2O3-TiCN ceramic cutting tools. Wear, Vol. 418-419, рр. 226–240, doi: S0043164818307713.
  27. Li, G., Sun, J., et al. (2018). Microstructure, mechanical properties, and cutting performance of TiAlSiN multilayer coatings prepared by HiPIMS. Surface and Coatings Technology, Vol. 353, 81, doi: 10.1016/j.surfcoat.2018.06.017.
  28. Durmaz, Y. M., Yildiz, F. (2019). The wear performance of carbide tools coated with TiAlSiN, AlCrN and TiAlN ceramic films in intelligent machining process. Materials Science: Ceramics International, Vol. 45, рр. 3839–3848, doi: 10.1016/J.CERAMINT.2018.11.055.
  29. Gao, F., Li, G., Xia, Y. (2017). Influence of hysteresis effect on properties of reactively sputtered TiAlSiN films. Applied Surface Science, Vol. 431, рр. 160–164, doi: 10.1016/j.apsusc.2017.07.283.
  30. Chen, H., Zheng, B.C., Ou, Y. X., Lei, M. K. (2020). Microstructure and thermal conductivity of Ti-Al-Si-N nanocomposite coatings deposited by modulated pulsed power magnetron sputtering. Thin Solid Films, Vol. 693, 137680, doi: 10.1016/j.tsf.2019.137680.

Full Text



© 2014-2021 Sumy State University.
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.