Influence of Technological Manufacturing Conditions on the Porosity of Calcium-Phosphate Scaffolds | Journal of Engineering Sciences

Influence of Technological Manufacturing Conditions on the Porosity of Calcium-Phosphate Scaffolds

Author(s): Chernobrovchenko V. S.1*, Dyadyura K. О.1, Balynskyi M.1, Panda A.2

1 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Faculty of Manufacturing Technologies with a seat in Prešov, Technical University of Košice, 080 01, Prešov, Slovakia.

*Corresponding Author’s Address: [email protected]

Issue: Volume 8, Issue 1 (2021)

Received: April 15, 2021
The final version received: June 17, 2021
Accepted for publication: June 22, 2021

Chernobrovchenko V. S., Dyadyura K. О., Balynskyi M., Panda A. (2021).Influence of technological manufacturing conditions on the porosity of calcium-phosphate scaffolds. Journal of Engineering Sciences, Vol. 8(1), pp. C18–C28, doi: 10.21272/jes.2021.8(1).c3

DOI: 10.21272/jes.2021.8(1).c3

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. The implantation of bone substitutes depends on the material’s osteoconductive potential and the structure’s porosity Porosity is a characteristic feature of most materials. The porosity of materials has a strong influence on some of their properties, both structural and functional. An essential requirement for bone scaffolds is porosity, which guides cells into their physical structure and supports vascularization. The macroporosity should be large enough and interdependent for bone ingrowth to occur throughout the entire volume of the implant. The pore size for cell colonization in bioceramics is approximately 100 μm. Pores larger than this value promote bone growth through the material. This pore size allows the flow of growth factors and cell adhesion and proliferation, allowing the formation of new bone and developing the capillary system associated with the ceramic implant. Porosity also affects the rate of resorption of ceramics: the larger the number of micropores, the higher the dissolution rate. The investigated properties were elastic moduli, ultimate strength, compressive strength, and average apparent density. The results obtained in this work are consistent with previous studies, proving the positive role of microporosity in osseointegration and bone formation.

Keywords: porosity, porosity influence, hydroxyapatite, bone substitute, relationship, osseointegration.


  1. Sukhodub, L. F., Diadiura, K. O. (2018). Design and fabrication of polymer-ceramic nanocomposites materials for bone tissue engineering. Journal of Nano- and Electronic Physics, Vol. 10(6), 06003(11pp), doi: 10.21272/jnep.10(6).06003.
  2. Bouler, J. M., Pilet, P., Gauthier., O. (2017). Verron biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomaterialia, Vol. 53, pp. 1–12, doi: 10.1016/j.actbio.2017.01.076.
  3. Rustom, L., Boudou, T., Lou, S., Pignot-Paintrand, I., Nemke, B. W., Lu, Y., Markel,M. D., Picart, C., Johnson, A. J. W. (2016). Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomaterialia, Vol. 44, pp. 144–154, doi: 10.1016/j.actbio.2016.08.025.
  4. Johnson, A. J. W., Herschler, B. A. (2011). A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia, Vol. 7(1), pp. 16–30, doi: 10.1016/j.actbio.2010.07.012.
  5. Miclăuş, T., Valla, V., Koukoura, A., Nielsen, A. A., Dahlerup, B., Tsianos, G.-I., Vassiliadis, E. (2020). Impact of design on medical device safety. Therapeutic Innovation and Regulatory Science, Vol. 54(4), pp. 839–849, doi: 10.1007/s43441-019-00022-4.
  6. Babaie, E., Bhaduri, S. B. (2017). Fabrication aspects of porous biomaterials in orthopedic applications: A review. ACS Biomater. Sci. Eng, Vol. 4(1), pp. 1–39, doi: 10.1021/acsbiomaterials.7b00615.
  7. Diez-Escudero, A., Espanol, M., Ginebra, M. P. (2020). Synthetic bone graft substitutes: Calcium-based biomaterials. Dental Implants and Bone Grafts, Woodhead Publishing, pp. 125–157.
  8. Ternero, F., Rosa, L. G., Urban, P., Montes, J. M., Cuevas, F. G. (2021). Influence of the total porosity on the properties of sintered materials – A review. Metals, Vol. 11(5), 730, doi: 10.3390/met11050730.
  9. Gibson, L. J., Ashby, M. F. (1999). Cellular Solids: Structure and Properties. Cambridge University Press.
  10. Rho, J. Y., Kuhn-Spearing, L., Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering and Physics, Vol. 20(2), pp. 92–102, doi: 10.1016/S1350-4533(98)00007-1.
  11. Cordell, J. M., Vogl, M. L., Johnson, A. J. W. (2009). The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 2(5), pp. 560–570, doi: 10.1016/j.jmbbm.2009.01.009.
  12. Prokopiev, O., Sevostianov, I. (2006). Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Materials Science and Engineering: A, Vol. 431(1-2), pp. 218–227, doi: 10.1016/j.msea.2006.05.158.
  13. Prokopiev, O., Sevostianov, I. (2006). On the possibility of approximation of irregular porous microstructure by isolated spheroidal pores. International Journal of Fracture, Vol. 139(1), pp. 129–136, doi: 10.1007/s10704-006-8370-9.
  14. Lutzweiler, G., Halili, A. N., Vrana, N. E. (2020). The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics, Vol. 12(7), pp. 602, doi: 10.3390/pharmaceutics12070602.
  15. Montazerian, H., Davoodi, E., Asadi, M., Kadkhodapour, J. (2017). Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties. Mater. Des., Vol. 126, pp. 98–114, doi: 10.1016/j.matdes.2017.04.009.
  16. Bobbert, F. S. L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., Zadpoor, A. A. (2017). Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomaterialia, Vol. 53, pp. 572–584, doi: 10.1016/j.actbio.2017.02.024.
  17. Babaie, E., Ren, Y., Bhaduri, S. B. (2016). Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization. J. Mater. Res., Vol. 31(08), pp. 995–1003, doi: 10.1557/jmr.2016.84.
  18. Sebastian, T., Preisker, T. R., Gorjan, L., Graule, T., Aneziris, C. G., Clemens, F. J. (2020). Synthesis of hydroxyapatite fibers using electrospinning: A study of phase evolution based on polymer matrix. Journal of the European Ceramic Society, Vol. 40(6), pp. 2489–2496, doi: 10.1016/j.jeurceramsoc.2020.01.070.
  19. Faridi-Majidi, R., Nezafati, N., Pazouki, M., Hesaraki, S. (2017). The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. J Aust Ceram Soc., Vol. 53, pp. 225–233, doi: 10.1007/s41779-017-0028-8.
  20. Czechowska, J., Zima, A., Siek, D., Ślósarczyk, A. (2018). Influence of sodium alginate and methylcellulose on hydrolysis and physicochemical properties of α- TCP based materials. Ceramics International, Vol. 44(6), pp. 6533–6540, doi: 10.1016/j.ceramint.2018.01.055.
  21. Januariyasa, K., Yusuf, Y. (2020). Porous carbonated hydroxyapatite-based scaffold using simple gas foaming method. Journal of Asian Ceramic Societies, Vol. 8(3), pp. 634–641, doi: 10.1080/21870764.2020.1770938.
  22. Li, X., Deng, Y., Chen, X., Xiao, Y., Fan, Y., Zhang, X. (2016). Gelatinizing technology combined with gas foaming to fabricate porous spherical hydroxyapatite bioceramic granules. Materials Letters, Vol. 185, pp. 428–431, doi: 10.1016/J.MATLET.2016.09.036.
  23. Mamat, N., Darus, F., Md Isa, R., Jaafar, M., Kawashita, M. (2017). Hierarchical bioceramic scaffold for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 66(17), pp. 877–890, doi: 10.1080/00914037.2017.1291507.
  24. Wu, Z., Zhou, Z., Hong, Y. (2018). Isotropic freeze casting of through-porous hydroxyapatite ceramics. Journal of Advanced Ceramics, Vol. 8(2), pp. 256–264, doi: 10.1007/s40145-018-0312-2.
  25. Mondal, S., Hoang, G., Manivasagan, P., Moorthy, M. S., Nguyen, T. P., Phan, T. T. V., Kim, H. H., Kim, M. H., Nam, S. Y., Oh, Y. (2018). Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceramics International, Vol. 44 (13), pp. 15735–15746, doi: 10.1016/j.ceramint.2018.05.248.
  26. Yuan, B., Zhou, S.-Y., Chen, X.-S. (2017). Rapid prototyping technology and its application in bone tissue engineering. Journal of Zhejiang University-Science B, Vol. 18(4), pp. 303–315, doi: 10.1631/jzus.B1600118.
  27. Truneca, M., Chlup, Z. (2017). Subtractive manufacturing of customized hydroxyapatite scaffolds for bone regeneration. Ceramics International, Vol. 43(14), pp. 11265–11273, doi: 10.1016/j.ceramint.2017.05.177.
  28. Sapkal, P. S., Kuthe, A. M., Kashyap, R. S., Nayak, A. R., Kuthe, S. A., Kawle, A. P. (2016). Indirect fabrication of hydroxyapatite/b-tricalcium phosphate scaffold for osseous tissue formation using additive manufacturing technology. J Porous Mater, Vol. 23(6), pp. 1567–1574, doi: 10.1007/s10934-016-0217-9.
  29. Hassanajili, S., Pour, A. K., Oryan, A., Talaei-Khozani, T. (2019). Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Materials Science and Engineering C, Vol. 104, 109960, doi: 10.1016/j.msec.2019.109960.
  30. Houben, A., Van Hoorick, J., Van Erps, J. A., Thienpont, H., Van Vlierberghe, S., Dubruel, P. (2017). Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications. Ann. Biomed. Eng, Vol. 45(1), pp. 58–83, doi: 10.1007/s10439-016-1610-x.
  31. Hui, D., Goodridge, R. D., Scotchford, C. A., Grant, D. M. (2018). Laser sintering of nano-hydroxyapatite coated polyamide 12 powders. Additive Manufacturing, Vol. 22, pp. 560–570, doi: 10.1016/j.addma.2018.05.045.
  32. Khallok, H., Elouahli, A., Ojala, S., Keiski, R. L., Kheribech, A., Hatim, Z. (2020). Preparation of biphasic hydroxyapatite/ β-tricalcium phosphate foam using the replication technique. Ceramics International, Vol. 46(14), pp. 22581–22591, doi: 10.1016/j.ceramint.2020.06.019.
  33. Wong, W. Y., Noor, A.-F. M., Othman, R. (2016). Sintering of beta-tricalcium phosphate scaffold using polyurethane template. Key Engineering Materials, Vol. 694, pp. 94–98, doi: 10.4028/
  34. Gandhimathi, C., Venugopal, J. R., Ramakrishna, S., Srinivasan, D. K. (2018). Electrospun‐electrosprayed hydroxyapatite nanostructured composites for bone tissue regeneration. Journal of Applied Polymer Science, Vol. 135(42), 46756, doi: 10.1002/app.46756.
  35. Seyedmajidi, S., Seyedmajidi, S., Alaghehmand, H., Hajian-Tilaki, K., Haghanifar, S., Zabihi, E., Rayabnia, R., Seyedmajidi, M. (2018). Synthesis and characterization of hydroxyapatite/bioactive glass nanocomposite foam and fluorapatite/bioactive glass nanocomposite foam by gel casting method as cell scaffold for bone tissue. Eurasian J Anal Chem, Vol. 13(3), em17, doi: 10.29333/ejac/85078.
  36. Miola, M., Verne, E., Vitale-Brovarone, C., Baino, F. (2016). Antibacterial bioglass-derived scaffolds: Innovative synthesis approach and characterization. International Journal of Applied Glass Science, Vol. 7(2), pp. 238–247, doi: 10.1111/ijag.12209.
  37. Shao, H., He, J., Lin, T., Zhang, Z., Zhang, Y., Liu, S. (2018). 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceramics International, Vol. 45(1), pp. 1163–1170, doi: 10.1016/j.ceramint.2018.09.300.
  38. Gomes, D. S., Santos, A. M. C., Neves, G. A., Menezez, R. R. (2019). A brief review on hydroxyapatite production and use in biomedicine. Cerâmica, Vol. 65(374), pp. 282–302, doi: 10.1590/0366-69132019653742706.
  39. Siddiqui, H. A., Pickering, K. L., Mucalo, M. R. (2018). A review on the use of hydroxyapatite carbonaceous structure composites in bone replacement materials for strengthening purposes materials. Materials (Basel), Vol. 11(10), 1813, doi: 10.3390/ma11101813.
  40. Kamrun, N. U., Shovon, B., Rajib, C. D., Shujit, C. P, Shukanta, B., Muhammed, Y. M., Sydul, I. M. D. (2017). Characterization of beta-tricalcium phosphate (β- TCP) produced at different process conditions. J Bioengineer and Biomedical Sci, Vol. 7(221), doi: 10.4172/2155-9538.1000221.
  41. Abe, Y., Kobatake, R., Okazaki, Y., Oki, Y., Naito, Y., Prananingrum, W., Tsuga, K. (2017). Novel development of phosphate treated porous hydroxyapatite. Materials, Vol. 10(12), 1405. doi: 10.3390/ma10121405.
  42. Karyasa, I. W. (2021). Developing renewable thermo-hydrothermic bioinorganic materials from bone wastes of slaughterhouses. Journal of Physics: Conference Series, Vol. 1869(1), 012030, doi: 10.1088/1742-6596/1869/1/012030.
  43. ISO 13175-3:2012 Implants for surgery – Calcium phosphates – Part 3: Hydroxyapatite and beta-tricalcium phosphate bone substitutes.
  44. Pinchuk, N., Parkhomey, O., Sych, O. (2017) In vitro investigation of bioactive glass-ceramic composites based on biogenic hydroxyapatite or synthetic calcium phosphates. Nanoscale Research Letters, Vol. 1(111), doi: 10.1186/s11671-017-1895-1.
  45. Parkhomei, O. R., Pinchuk, N. D., Sych, O., Tomila, T. (2016). Structural and mechanical properties of bioactive glass–ceramic composites. Powder Metallurgy and Metal Ceramics, Vol. 55 (3-4), doi: 10.1007/s11106-016-9792-1.

Full Text

© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU