Influences of Aluminium / E-Glass Volume Fraction on Flexural and Impact Behaviour of GLARE Hybrid Composites

Author(s): Santhosh M. S.*, Sasikumar R.

Affiliation(s): Selvam College of Technology, NH 7 Salem Road, Namakkal, 637003 Tamilnadu, India

*Corresponding Author’s Address: [email protected]

Issue: Volume 6; Issue 1 (2019)

Paper received: October 23, 2018
The final version of the paper received: December 12, 2018
Paper accepted online: December 16, 2018

Santhosh, M. S., Sasikumar, R. (2019). Influences of aluminium / E-glass volume fraction on flexural and impact behaviour of GLARE hybrid composites. Journal of Engineering Sciences, Vol. 6(1), pp. C6-C10, doi: 10.21272/jes.2019.6(1).c2

DOI: 10.21272/jes.2019.6(1).c2

Research Area: MANUFACTURING ENGINEERING: Materials Science

Abstract. Composites with different configuration of fiber (E-Glass) and metal (Aluminium) laminates were fabricated and tested for grasping optimum hybrid structure. GLARE (Glass laminate aluminium reinforced epoxy) is a unique composite recently being used by wide engineering domains like defense body and vehicle armors, aerospace, marine and structural applications. The GLARE hybrid composites are manufactured by adding very thin layer of aluminium sheets (surface treated) on the surface of unidirectional E-Glass fiber fabrics in presence of epoxy polymer. Firstly three hybrid GLARE laminates were fabricated with different volume fractions. Consequently, impact and flexural behaviors are measured by izod, charpy impact and flexural tests for all volume configurations. Impact resistance of such hybrid laminate is intensively great. The results depicts that the linear metal volume fraction (MVF) increment on fiber metal laminates greatly increases impact energy absorption capacity of composites and little difference in flexural modulus. Finally the fractured surfaces were analyzed by optical microscope.

Keywords: GLARE composite, impact energy, flexural test, epoxy polymer, aluminium sheet, E-Glass fiber.


  1. Van, R., Sinke, J., de Vries, T., & van der Zwaag, S. (2004). Property optimization in fiber metal laminates. Applied Composite Materials, Vol. 11(2), pp. 63–76.
  2. Wang, R. M., Zheng, S. R., & Zheng, Y. G. (2011). Polymer Matrix Composites and Technology. Elsevier.
  3. Wallenberger, F. T., Watson, J. C., & Li, H. (2001) Glass Fibers. Materials Park, ASM International.
  4. Vlot, A., Kroon, E., & Rocca, G. L. (1997). Impact response of fiber metal laminates. Key Engineering Materials, Vol. 141, pp. 235–276.
  5. Cortes, P., & Cantwell, W. (2006). The fracture properties of a fiber-metal laminate based on magnesium alloy. Composites: Part B, Vol. 37, pp. 163–170.
  6. Castrodeza, E., Soldan, L., & Bastian, F. (2006). Crack resistance curves of GLARE laminates by elastic compliance. Congresso Brasileiro de Engenharia e Ciencia dos Materials.
  7. Karatas, M. A., & Gokkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, doi: 10.1016/j.dt.2018.02.001.
  8. Devi, G. R., & Palanikumar, K. (2018). Analysis on drilling of woven glass fibre reinforced aluminium sandwich laminates. Journal of Materials Research and Technology, doi: 10.1016/j.jmrt.2018.06.021.
  9. Santiago, R. C., Cantwell, W. J., Jones, N., & Alves, M. (2018). The modelling of impact loading on thermoplastic fibre-metal laminates. Composite Structures, Vol. 189, pp. 228–238.
  10. Gonzalez-Canche, N. G., Flores-Johnson, & E. A., Carrillo, J. G. (2017). Mechanical characterization of fiber metal laminate based on aramid fiber reinforced polypropylene. Composite Structures, Vol. 172, pp. 259–266.
  11. Aghamohammad, H., Abbandanak, N. H., Eslami-Farsani, R., & Siadati, S. M. H. (2018). Effects of various aluminum surface treatments on the basalt fiber metal laminates interlaminar adhesion. International Journal of Adhesion and Adhesives, doi: 10.1016/j.ijadhadh.2018.03.005.
  12. Santhosh, M. S., Sasikumar, R., Natrayan, L., Kumar, M. S., Elango, V., & Vanmathi, M. (2018). Investigation of mechanical and electrical properties of Kevlar / E-glass and Basalt / E-glass reinforced hybrid composites. International Journal of Mechanical and Production Engineering Research and Development, Vol. 8(3), pp. 591–598.
  13. Hassan, M. K., Abdellah, M. Y., Azabi, S. K., &Marzouk, W. W. (2015). Fracture Toughness of a Novel GLARE Composite Material. International Journal of Engineering and Technology, Vol. 15(6), pp. 36–41.
  14. Golshahr, A., Natarajan, E., Santhosh, M. S., Sasikumar, R., Ramesh, S., &Durairaj, R. (2018). Multiwall Carbon Nanotube Reinforced Silicone for Aerospace Applications. International Journal of Mechanical and Production Engineering Research and Development, Vol. 8(4), pp. 743–752.
  15. Crupi, V., Kara, E., Epasto, G., Guglielmino, E., & Aykul, H. (2014). Prediction model for the impact response of glass fiber reinforced aluminium foam sandwiches. International Journal of Impact Engineering, doi: 10.1016/j.ijimpeng.2014.11.012.
  16. Kumar, S., Shivashankar, G. S., Dhotey, K., & Singh, J. (2017). Experimental study wear rate of glass fiber reinforced epoxy polymer composites filled with aluminium powder. Materials Today, Vol. 4, pp. 10764–10768.
  17. Mariam, M., Afendi, M., Majid, M. S. A., Ridzuan, M. J. M., & Gibson, A. G. (2017). Tensile and fatigue properties of single lap joints of aluminium alloy/glass fiber reinforced composites fabricated with different joining methods. Composite Structures, doi: 10.1016/j.compstruct.2018.06.003.
  18. Sarkar, P., Modak, N., & Sahoo, P. (2018). Mechanical and Tribological Characteristics of Aluminium Powder filled Glass Epoxy Composites. Materials Today, Vol. 5, pp. 5496–5505.
  19. Trzepiecinski, T., Kubit, A., et al. (2018). Strength properties of aluminium/glass-fiber reinforced laminate with additional epoxy adhesive film interlayer. International Journal of Adhesion and Adhesives, doi: 10.1016/j.ijadhadh.2018.05.016.
  20. Rajkumar, G. R., Krishna, M., et al. (2014). Investigation of tensile and bending behaviour of aluminium based hybrid fiber metal laminates. Proceedia Material Science, Vol. 5, pp. 60–68.

Full Text