Machine Learning Approach for Solar Irradiance Estimation on Tilted Surfaces in Comparison with Sky Models Prediction | Journal of Engineering Sciences

Machine Learning Approach for Solar Irradiance Estimation on Tilted Surfaces in Comparison with Sky Models Prediction

Author(s): Mbah O. M.1*, Madueke C. I.2, Umunakwe R.2, Okafor C. O.3

1* Department of Mechanical Engineering, Federal University Oye-Ekiti, Ikole, City, 370105, Ekiti-State, Nigeria;
2 Department of Material and Metallurgical Engineering, Federal University Oye-Ekiti, Street, Ikole, 370105, Ekiti -State, Nigeria;
3 Department of Mechanical Engineering, Grundtvig Polytechnic, Street, Oba, 434116, Anambra State, Nigeria

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 2 (2022)

Submitted: April 14, 2022
Accepted for publication: August 29, 2022
Available online: September 4, 2022

Mbah, O. M., Madueke, C. I., Umunakwe, R., Okafor, C.O. (2022). Machine learning approach for solar irradiance estimation on tilted surfaces in comparison with sky models prediction. Journal of Engineering Sciences, Vol. 9(2), pp. G1-G6, doi: 10.21272/jes.2022.9(2).g1

DOI: 10.21272/jes.2022.9(2).g1

Research Area:  CHEMICAL ENGINEERING: Energy Efficient Technologies

Abstract. In this study, two supervised machine learning models (Extreme Gradient Boosting and K-nearest Neighbour) and four isotropic sky models (Liu and Jordan, Badescu, Koronakis, and Tian) were employed to estimate global solar radiation on daily data measured for one year period at the National Center for Energy, Research and Development (NCERD) at the University of Nigeria, Nsukka. Two solarimeters were employed to measure solar radiation: one measured solar radiation on a tilted surface at a 15° angle of tilt, facing south, and the other measured global horizontal solar radiation. The measured global horizontal solar radiation and the time and day number were used as input for the prediction process. Python computational software was used for model prediction, and the performance of each model was assessed using statistical methods such as mean bias error (MBE), mean absolute error (MAE), and root mean square error (RMSE) (RMSE). Compared to the measured data, it was discovered that the Extreme Gradient Boosting (XGBoost) algorithm offered the best performance with the least inaccuracy to sky models.

Keywords: machine learning, sky models, solar energy, solar radiation, tilted surface.


1     Mbah, O. M., Mgbemene, C. A., Enibe, S. O., Ozor, P. A., Mbohwa, C. (2018). Comparison of experimental data and isotropic sky models for global solar radiation estimation in Eastern Nigeria. Proceedings of the World Congress on Engineering, pp. 581-585.
2     Mbah, O. M., Ozor, P., Mgbemene, C., Enibe, S. O., Mbohwa, C. (2018). Comparative analysis of anisotropic sky models and experimental data in estimating solar radiation on tilted surface in Sub-Saharan African climate. IEOM Conference. IEOM 2018, pp. 592-598.
3     Shourehdeli, S. A., Mobini, K., Asakereh, A. (2022). Modeling of isentropic coefficients used in one dimensional model to predict ejector performance at critical mode. Iranian (Iranica) Journal of Energy & Environment, Vol. 13, pp. 111-123.
4     Chabane, F., Arif, A., Moummi, N., Brima, A. (2020). Prediction of solar radiation according to aerosol optical depth. Iranian (Iranica) Journal of Energy & Environment, Vol. 11, pp. 271-276
5     Piryonesi, S. M., El-Diraby, T. E. (2020). Data analytics in asset management: Cost-effective prediction of the pavement condition index. Journal of Infrastructure Systems, Vol. 26, 04019036.
6     Guermoui, M., Rabehi, A., Gairaa, K., Benkaciali, S. (2018). Support vector regression methodology for estimating global solar radiation in Algeria. The European Physical Journal Plus, Vol. 133, pp. 1-9.
7     Chen, J. L., Li, G. S. (2014). Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables. Theoretical and Applied Climatology, Vol. 115, pp. 627-638.
8     Chen, J. L., Li, G. S., Wu, S. J. (2013). Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration. Energy Conversion and Management, Vol. 75, pp. 311-318.
9     Chen, J. L., Liu, H. B., Wu, W., Xie, D. T. (2011). Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study. Renewable Energy, Vol. 36, pp. 413-420.
10   Mahdavi Jafari, M., Khayati, G. R., Hosseini, M., Danesh-Manesh, H. (2017). Modeling and optimization of roll-bonding parameters for bond strength of Ti/Cu/Ti clad composites by artificial neural networks and genetic algorithm. International Journal of Engineering, Vol. 30, pp. 1885-1893.
11   Motameni, H. (2020). Determining the composition functions of Persian non-standard sentences in terminology using a deep learning fuzzy neural network model. International Journal of Engineering, Vol. 2020, Vol. 33, pp. 2471-2481.
12   Benmouiza, K., Cheknane, A. (2013). Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Conversion and Management, Vol. 75, pp. 561-569.
13   Rahimikhoob, A. (2010). Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renewable Energy, Vol. 35, pp. 2131-2135.
14   Çelik, Ö., Teke, A., Yıldırım, H. B. (2016). The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Cleaner Production, Vol. 116, pp. 1-12.
15   Torabi, M., Mosavi, A., Ozturk, P., Varkonyi-Koczy, A., Istvan, V. (2018). A hybrid machine learning approach for daily prediction of solar radiation. International Conference on Global Research and Education, pp. 266-274.
16   Gala, Y., Fernández, Á., Dı́az, J., Dorronsoro, J. R. (2016). Hybrid machine learning forecasting of solar radiation values. Neurocomputing, Vol. 176, pp. 48-59.
17   Achour, L., Bouharkat, M., Assas, O., Behar, O. (2017). Hybrid model for estimating monthly global solar radiation for the Southern of Algeria:(Case study: Tamanrasset, Algeria). Energy, Vol. 135, pp. 526-539.
18   Herath, H., Ariyathunge, S., Karunasena, G. (2021). Development of a Mathematical Model to Forecast Solar Radiation and Validating Results Using Machine Learning Technique. Available online:
19   Quej, V. H., Almorox, J., Arnaldo, J. A., Saito, L. (2017). ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 155, pp. 62-70.
20   Marzo, A., Trigo-Gonzalez, M., Alonso-Montesinos, J., Martı́nez-Durbán, M., López, G., Ferrada, P., Fuentealba, E., Cortés, M., Batlles, F. J. (2017). Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renewable Energy, Vol. 113, pp. 303-311.
21   Ağbulut, Ü., Gürel, A. E., Ergün, A., Ceylan, İ. (2020). Performance assessment of a V-Trough photovoltaic system and prediction of power output with different machine learning algorithms. Journal of Cleaner Production, Vol. 268, 122269.
22   Ağbulut, Ü., Gürel, A. E., Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, Vol. 135, 110114.
23   Hacioğlu, R. (2017). Prediction of solar radiation based on machine learning methods. The Journal of Cognitive Systems, Vol. 2, pp. 16-20.
24   Alizamir, M., Kim, S., Kisi, O., Zounemat-Kermani, M. (2020). A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy, Vol. 197, 117239.
25   Bamisile, O., Oluwasanmi, A., Ejiyi, C., Yimen, N., Obiora, S., Huang, Q. (2021). Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. International Journal of Energy Research, Vol. 2021, doi: 10.1002/er.6529.
26   Üstün, İ., Üneş, F., Mert, İ., Karakuş, C. (2020). A comparative study of estimating solar radiation using machine learning approaches: DL, SMGRT, and ANFIS. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 2020, pp. 1-24.
27   Aslam, M., Lee, J. M., Kim, H. S., Lee, S. J., Hong, S. (2020). Deep learning models for long-term solar radiation forecasting considering microgrid installation: A comparative study. Energies, Vol. 13, 147.
28   Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., Xiang, Y. (2018). Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management, Vol. 164, pp. 102-111.
29   Shukla, K. N., Rangnekar, S., Sudhakar, K. (2015). Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: A case study for Bhopal, India. Energy Reports, Vol. 1, pp. 96-103.
30   Feng, Y., Gong, D., Zhang, Q., Jiang, S., Zhao, L., Cui, N. (2019). Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Conversion and Management, Vol. 198, 111780.
31   Sharifi, S. S., Rezaverdinejad, V., Nourani, V. (2016). Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches. Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 149, pp. 131-145.
32   Khosravi, A., Nunes, R. O., Assad, M. E. H., Machado, L. (2018). Comparison of artificial intelligence methods in estimation of daily global solar radiation. Journal of Cleaner Production, Vol. 194, pp. 342-358.

Full Text

© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU