Object-Oriented Analysis of Frame 3D Textile Structures

Author(s): Orlovsky B. V., Manoilenko O. P., Bezuhlyi D. M.*

Affiliation(s): Kyiv National University of Technology and Design, 2, Mala Shiyanovska St., 01011 Kyiv, Ukraine

*Corresponding Author’s Address: [email protected]

Issue: Volume 10, Issue 2 (2023)

Dates:
Submitted: June 5, 2023
Received in revised form: September 8, 2023
Accepted for publication: September 11, 2023
Available online: September 20, 2023

Citation:
Orlovsky B. V., Manoilenko O. P., Bezuhlyi D. M. (2023). Object-oriented analysis of frame 3D textile structures. Journal of Engineering Sciences (Ukraine), Vol. 10(2), pp. C26–C35. DOI: 10.21272/jes.2023.10(2).c4

DOI: 10.21272/jes.2023.10(2).c4

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. The article applied an object-oriented approach to analyze complex mechanical and technological objects based on an example of frame 3D textile structure development for objects from composite materials. Based on the research, the principle of global class inheritance of objects was analyzed and summarized using the object-oriented approach for the mechanical-technological structure of 3D fabrics using mechanical technology of sewing, weaving, knitting, and knitting productions. The design scheme of a generalized topology of object-oriented design for mechanical and technological systems of 3D fabrics of sewing, knitting, weaving, and weaving productions was developed. Methods and equipment for manufacturing mechanical-technological frame structures of 3D objects from textile materials were presented. Novel concepts of object = 3D micro-model, object = 2D mini-model, and object = 3D macro-model for frame 3D textile structures were introduced. Principles of inheritance, encapsulation, and polymorphism were applied to applicable models. For anisotropic textile 2D models, typical diagrams are given in polar coordinates for dynamic modulus of elasticity and logarithmic damping decrement.

Keywords: complex system, inheritance, technological object, micromechanics, anisotropy.

References:

  1. NTRS – NASA Technical Reports Server (1997). Handbook of Analytical Methods for Textile Composites. Available online: https://ntrs.nasa.gov/citations/19970017583
  2. Beloshenko, V., Voznyak, Y., Voznyak, A., Savchenko, B. (2017) New approach to production of fiber reinforced polymer hybrid composites. Composites Part B: Engineering, Vol. 112, pp. 22–30. https://doi.org/10.1016/j.compositesb.2016.12.030
  3. Soloshych, I., Shvedchykova, I., Grynyov, R., Kononets, N., Bunetska, I. (2021). Model of formation of ecological competence of future engineers-electromechanics. In: 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, pp. 1–5. https://doi.org/10.1109/MEES52427.2021.9598792
  4. Powell, R. E., Yeh, H.-Y. (1995). Mechanical characterization of hybridized braided composite structures. Journal of Reinforced Plastics and Composites, Vol. 14(2), рр. 100–194. https://doi.org/10.1177/073168449501400205
  5. Macander, A. B., Crane, R. M., Camponeschi, E. T. (1986). Fabrication and mechanical properties of multidimensionally (X-D) braided composite materials. Composite Materials, pp. 422–443. https://doi.org/10.1520/STP35361S
  6. Leong, K. H., Falzon, P. J., Bannister, M. K., Herszberg, I. (1998). An investigation of the mechanical performance of weft-knit Milano-rib glass/epoxy composites. Composites Science and Technology, Vol. 58(2), рр. 239–251. https://doi.org/10.1016/S0266-3538(97)00128-0
  7. Orlovsky, B. V. (2019). Analysis of the use of machine stitches for creating 3D structures from polymer composite interior materials in aircraft construction. Problems of Friction and Wear, Vol. 4(85), pp. 117–122. https://doi.org/10.18372/0370-2197.4(85).13881
  8. Chou, T. W., Ko, F. K. (1989). Composite Materials Series-3: Textile Structural Composites. Elsevier Science Publishers B. V., Amsterdam, Netherlands. https://doi.org/10.1007/978-3-662-49514-8_1 2 S.D
  9. Malik, T., Parmar, S. (2018). 3-D Fabrics – Аn Overview. Available online: https://www.fibre2fashion.com/industry-article/1715/3-d-fabrics-an-overview
  10. Bilisik, K. (2012). Multiaxis three-dimensional weaving for composites: A review. Textile Research Journal, Vol. 82(7), pр. 636–743. https://doi.org/10.1177/0040517511435013
  11. Mishra, R. K. (2023). Advances in textile structural composites. Polymers, Vol. 15(4), 808. https://doi.org/10.3390/polym15040808
  12. Lee, B., Herszberg, I., Bannister, M. K., Curiskis, J. I. (1997). The effect of weft binder path length on the architecture of multi-layer woven carbon preforms. Textile Composites and Characterisation, Vol. 5, рр. 260–269. Available online: https://www.iccm-central.org/Proceedings/ICCM11proceedings/papers/ICCM11_V5_27.pdf
  13. Wang, P., Legrand, X., Soulat, D. (2017). Three-dimentional textile preform using advanced textile technologies for composite manufacturing. Textiles for Advanced Applications, pp. 161–189. https://doi.org/10.5772/intechopen.68175
  14. Tong, L., Mouritz, A. P., Bannister, M. K. (2021). 3D Fibre Reinforced Polymer Composites. Elsevier, Netherlands.
  15. Donetsky, K. I., Raskutin, A. E., Hilov, P. A., et al. (2015). Volumetric textile preforms used in the production of composite materials. Proceedings of VIAM, Vol.. 9, pp. 77–85.
  16. Bezugliy, D. M., Manoilenko, O. P. (2022). 3D frame textile products and their application. In: Abstracts of the 5th International Scientific and Practical Conference “Mechatronic Systems: Innovations and Engineering”, Kyiv National University of Technology and Design, Kyiv, Ukraine, pp. 113–114. Available online: https://er.knutd.edu.ua/bitstream/123456789/19221/1/MSIE_2021_P113-114.pdf
  17. Muñoz, R., Martínez, V., Sket, F., González, C., Llorca, J. (2014). Mechanical behavior and failure micromechanisms of hybrid 3D woven composites in tension. Composites Part A: Applied Science and Manufacturing, Vol. 59, pp. 93–104. https://doi.org/10.1016/j.compositesa.2014.01.003
  18. Stig, F., Hallström, S. (2012). A modelling framework for composites containing 3D reinforcement. Composite Structures, Vol. 94(9), pp. 2895–2901. https://doi.org/10.1016/j.compstruct.2012.03.009
  19. Xie, J., Guo, Z., Shao, M., Zhu, W., Jiao, W., Yang, Z., Chen, L. (2023). Mechanics of textiles used as composite preforms: A review. Composite Structures, Vol. 304(2), 116401. https://doi.org/10.1016/j.compstruct.2022.116401
  20. Ali, M., Kausar, F., Shahid, S., Zeeshan, M., Nawab, Y., Riaz, R., Anjum, A. S. (2019). Novel derivatives of 3D woven T-shaped composites with improved performance. The Journal of The Textile Institute, Vol. 110(2), pp. 267–273. https://doi.org/10.1080/00405000.2018.1480914
  21. Oddy, C., Ekermann, T., Ekh, M., Fagerström, M., Hallström, S., Stig, F. (2019). Predicting damage initiation in 3D fibre-reinforced composites – The case for strain-based criteria. Composite Structures, Vol. 230, 111336. https://doi.org/10.1016/j.compstruct.2019.111336
  22. Ogale, V., Alagirusamy, R. (2004). Textile preforms for advanced composites. Indian Journal of Fibre and Textile Research, Vol. 29, pp. 366–375.
  23. Stig, F., Hallström, S. (2019). Effects of crimp and textile architecture on the stiffness and strength of composites with 3D reinforcement. Advances in Materials Science and Engineering, Vol. 2019, 8439530. https://doi.org/10.1155/2019/8439530
  24. Karvatskii, A. Ya. (2015). Finite Element Method in Problems of Mechanics of Continuous Media. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine. Available online: https://cpsm.kpi.ua/publikatsiji/knigi/957-metod-skinchennikh-elementiv-u-zadachakh-mekhaniki-sutsilnikh-seredovishch-programna-realizatsiya-ta-vizualizatsiya-rezultativ.html
  25. Dzyuba, V. I. (2000). Scientific Fundamentals of Automated Design of Working Processes of Knitting Machines. An Object-Oriented Approach. Kyiv National University of Technology and Design, Kyiv, Ukraine.
  26. Orlovsky, B. V., Tropsha, D. A. (2000). Basic principles of object-oriented design of work processes and machines of light industry. Visnik of the Volodymyr Dahl East Ukrainian National University, Vol. 2, pp. 44–51.
  27. Manoilenko, O. (2020). Topological analysis and synthesis of machine chain stitches. Fibres and Textiles, Vol. 27(4), pp. 58–69. Available online: http://vat.ft.tul.cz/2020/4/VaT_2020_4_8.pdf
  28. Shcherban’, V., Melnyk, G., Sholudko, M., Kalashnyk, V. (2018). Yarn tension while knitting textile fabric. Fibres and Textiles, Vol. 25(3), pp. 74–83. Available online: http://vat.ft.tul.cz/2018/3/VaT_2018_3_12.pdf
  29. Ielina, T., Halavska, L., Mikucioniene, D., Bobrova, S., Dmytryk, O., (2021). Development of 3D models of knits from multi-filament ultra-strong yarns for theoretical modelling of air permeability. Materials, Vol. 14(13), 3489. https://doi.org/10.3390/ma14133489
  30. Guyader, G., Gabor, A., Hamelin, P. (2013). Analysis of 2D and 3D circular braiding processes: Modeling the interaction between the process parameters and the pre-form architecture. Mechanism and Machine Theory, Vol. 69, рр. 90–104. https://doi.org/10.1016/j.mechmachtheory.2013.04.015
  31. Kessels, J. F. A., Akkerman, R. (2002). Prediction of the yarn trajectories on complex braided preforms. Composites Part A: Applied Science and Manufacturing, Vol. 33(8), pp. 1073–1081. https://doi.org/10.1016/S1359-835X(02)00075-1
  32. Zhang, Q., Beale, D., Broughton, R. M. (1999). Analysis of circular braiding process. Part 1: Theoretical investigation of kinematics of the circular braiding process. Journal of Manufacturing Science and Engineering, Vol. 121(2), pp. 345–350. https://doi.org/10.1115/1.2832687
  33. Zhang, Q., Beale, D., Broughton, R. M. (1999). Analysis of circular braiding process. Part 2: mechanics analysis of the circular braiding process and. Journal of Manufacturing Science and Engineering, Vol. 121(3), pp. 351–359. https://doi.org/10.1115/1.2832688
  34. Du, G. W., Popper, P. (1994). Analysis of a circular braiding process for complex shapes. Journal of the Textile Institute, Vol. 85(3), рр. 316–337. https://doi.org/10.1080/00405009408631277
  35. Pickett, A., Erber, A., von Reden, T., Drechsler, K. (2009). Comparison of analytical and finite element simulation of 2D braiding. Plastics, Rubber and Composites, Vol. 38(9–10), pp. 387–395. https://doi.org/10.1179/146580109X12540995045769
  36. Rawal, A., Potluri, P., Steele, C. (2005). Prediction of yarn paths in braided structures formed on a square pyramid. Journal of Industrial Textiles, Vol. 35(2), pp. 115–135. https://doi.org/10.1177/1528083707072354
  37. Potluri, P., Manan, A. (2003). Mechanics of non-orthogonally interlaced textile composites. Composites Part A: Applied Science and Manufacturing, Vol. 38(4), рр. 1216–1226. https://doi.org/10.1016/j.compositesa.2006.04.008
  38. Bereznenko, S. M. (2002). Basics of the Theory of Resource-Saving Technological Processes of Forming and Form-Fixing of Clothing Details Taking Into Account the Anisotropy of Textile Materials. DSc. Thesis. Kyiv National University of Technology and Design, Kyiv, Ukraine.
  39. Sadretdinova, N. (2005). Improvement of Duplicating Processes and Ensuring Dimensional Stability of Clothing Parts Made of Linen Fabrics. Ph.D. thesis. Kyiv National University of Technology and Design, Kyiv, Ukraine.
  40. Goetzendorf-Grabowska, B., Karaszewska, A., Vlasenko, V. I., Arabuli, A. T. (2014). Bending stiffness of knitted fabrics – Comparison of test methods. Fibres and Textiles in Eastern Europe, Vol. 103(1), pp. 43–50. Available online: http://faamiran.com/wp-content/uploads/2015/05/2014-1-43-p-bending_stiffness_of_knitted_fabrics_ndash_nbspcomparison_of_test_methods-_p-.pdf
  41. Gamma, E., Helm, R., Jonson, R., Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston, USA.
  42. Budd, T. (2002). An Introduction to Object-Oriented Programming. Addison-Wesley, Boston, USA.
  43. Kodur, V., Venkatachari, S., Matsagar, V. A., Singh, S. B. (2022). Test methods for characterizing the properties of fiber-reinforced polymer composites at elevated temperatures. Polymers, Vol. 14(9), 1734. https://doi.org/10.3390/polym14091734

Full Text

© 2023 by the author(s).

This work is licensed under Creative Commons Attribution-Noncommercial 4.0 International License