Real Power Loss Reduction by Enhanced RBS Algorithm

Author(s): Kanagasabai L.

Affiliation(s): Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, 520007 Andhra Pradesh, India

*Corresponding Author’s Address: [email protected]

Issue: Volume 8, Issue 2 (2021)

Submitted: July 20, 2021
Accepted for publication: December 3, 2021
Available online: December 8, 2021

Kanagasabai L. (2021). Real power loss reduction by enhanced RBS algorithm. Journal of Engineering Sciences, Vol. 8(2), pp. E1-E9, doi: 10.21272/jes.2021.8(2).e1

DOI: 10.21272/jes.2021.8(2).e1

Research Area:  MECHANICAL ENGINEERING: Computational Mechanics

Abstract. In this paper enhanced red-breasted sapsucker (ERBS) algorithm has been proposed to solve the power loss lessening problem. RBS algorithm is designed on the copulate actions of RBS. Male RBS (MRBS) will attract the female with an exclusive tone. Concerning the concentration of the tone female RBS (FMBS) will progress in the direction of the MRBS. Various tone engendered by MRBS will catch the fancy of FRBS, and this action is analogous to data contribution in Evolutionary techniques. Naturally, so many MRBS will put huge efforts simultaneously to attract the FRBS for copulate. RBS has been integrated with the sine-cosine algorithm (SCA) and opposition-based learning (OBL). SCA process shifts resourcefully from exploration to exploitation by acclimatizing the functions. Solutions are frequently streamlined to the premium solution and optimization of the premium region of the exploration zone. OBL is one of the significant optimization procedures to improve the convergence pace of different optimization procedures. The successful execution of the OBL holds the assessment of the opposite population and present population in the analogous generation to find out the better contender solution. The proposed enhanced RBS (ERBS) algorithm is corroborated in IEEE 30 bus test systems. Power discrepancy compressed, power reliability amplified, and power loss condensed.

Keywords: optimal, reactive, transmission, sine-cosine algorithm, opposition.


  1. Carpentier, J. (1962). Contribution à l’étude du dispatching économique. Bull. de la Société Française des Electriciens, Vol. 3, pp. 431-447.
  2. Dommel, H. W., Tinney, W. F. (1968). Optimal power flow solutions. IEEE Trans. Power Appar. Syst., Vol. PAS-87, pp. 1866-1876.
  3. Takapoui, R., Möhle, N., Boyd, S., Bemporad, A. (2017). A simple effective heuristic for embedded mixed-integer quadratic programming. International Journal of Control, pp. 1-11, doi: 10.1080/00207179.2017.1316016.
  4. Abaci, K., Yamaçli, V. (2017). Optimal reactive-power dispatch using differential search algorithm. Electrical Engineering, Vol. 99(1), pp. 213-225.
  5. Pulluri, H., Naresh, R., Sharma, V. (2017). An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow. Applied Soft Computing, Vol. 54, pp. 229-245.
  6. Heidari, A., Abbaspour, R. A., Jordehi, A. R. (2017). Gaussian barebones water cycle algorithm for optimal reactivepower dispatch in electrical power systems. Applied Soft Computing, Vol. 57, pp. 657-671.
  7. Keerio, M. U., Ali, A., Saleem, M., Hussain, N., Hussain, R. (2020). Multi-objective optimal reactive power dispatch considering probabilistic load demand along with wind and solar power integration. 2nd International Conference on Smart Power and Internet Energy Systems (SPIES), Bangkok, Thailand, 2020, pp. 502-507, doi: 10.1109/SPIES48661.2020.9243016.
  8. Roy, R., Das, T., Mandal, K. K. (2020). Optimal reactive power dispatch for voltage security using JAYA algorithm. International Conference on Convergence to Digital World – Quo Vadis (ICCDW), Mumbai, India, 2020, pp. 1-6, doi: 10.1109/ICCDW45521.2020.9318700.
  9. Mugemanyi, S., Qu, Z., Rugema, F. X., Dong, Y., Bananeza, C., Wang, L. (2020). Optimal reactive power dispatch using chaotic bat algorithm. IEEE Access, Vol. 8, pp. 65830-65867, doi: 10.1109/ACCESS.2020.2982988.
  10. Sahli, Z., Hamouda, A., Bekrar, A., Trentesaux, D. (2014). Hybrid PSO-tabu search for the optimal reactive power dispatch problem. Proceedings of the IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 2014, pp. 3536-3542, doi: 10.1109/IECON.2014.7049024.
  11. Mouassa, S., Bouktir, T., Salhi, A. (2017). Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Engineering Science and Technology, an International Journal, Vol. 20(3), pp. 885-895.
  12. Mandal, B., Roy, P. K. (2013). Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. International Journal of Electrical Power and Energy Systems, Vol. 53, pp. 123-134.
  13. Khazali, H., Kalantar, M. (2011). Optimal reactive power dispatch based on harmony search algorithm. International Journal of Electrical Power and Energy Systems, Vol. 33(3), pp. 684-692.
  14. Tran, H. V., Pham, T. V., Pham, L. H., Le, N. T., Nguyen, T. T. (2019). Finding optimal reactive power dispatch solutions by using a novel improved stochastic fractal search optimization algorithm. Telecommunication Computing Electronics and Control, Vol. 17(5), pp. 2517-2526.
  15. Polprasert, J., Ongsakul, W., Dieu, V. N. (2016). Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization. Electric Power Components and Systems, Vol. 44(5), pp. 518-532.
  16. Duong, T. L., Duong, M. Q., Phan, V.-D., Nguyen, T. T. (2020). Optimal reactive power flow for large-scale power systems using an effective metaheuristic algorithm. Hindawi Journal of Electrical and Computer Engineering, Vol. 2020, 6382507, doi: 10.1155/2020/6382507.
  17. Muhammad, Y., Rahimdad, R., Muhammad, A., Farman, C., Naveed I., He, Y. (2020). Solution of optimal reactive power dispatch with FACTS devices: A survey. Energy Reports, Vol. 6, pp. 2211-2229, doi: 10.1016/j.egyr.2020.07.030.
  18. Mukherjee, A., Mukherjee, V. (2015). Solution of optimal reactive power dispatch by Chaotic Krill Herd algorithm. IET Generation, Transmission and Distribution, Vol. 9(15), pp. 2351-2362.
  19. MATPOWER 4.1 IEEE 30-bus and 118-bus test system. Available online:
  20. Illinois Center for a Smarter Electric Grid (ICSEG). Available online:
  21. Dai, C., Chen, W., Zhu, Y., Zhang, X. (2009). Seeker optimization algorithm for optimal reactive power dispatch. IEEE T. Power Syst., Vol. 24(3), pp. 1218-1231.
  22. Subbaraj, P., Rajnarayan, P. N. (2009). Optimal reactive power dispatch using self-adaptive real coded genetic algorithm. Electr. Power Syst. Res., Vol. 79(2), pp. 374-38.
  23. Pandya, S., Roy, R. (2015). Particle swarm optimization based optimal reactive power dispatch. Proceeding of the IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp: 1-5, doi: 10.1109/ICECCT.2015.7225981.
  24. Hussain, A. N., Abdullah, A. A., Neda, O. M. (2018). Modified particle swarm optimization for solution of reactive power dispatch. Research Journal of Applied Sciences, Engineering and Technology, Vol. 15(8), pp. 316-327, doi: 10.19026/rjaset.15.5917.
  25. Mini Vishnu, Sunil Kumar, T. K. (2020). An improved solution for reactive power dispatch problem using diversity-enhanced particle swarm optimization. Energies, Vol. 13, 2862, doi: 10.3390/en13112862.
  26. Muhammad, Y., Rahimdad, R., Muhammad, A., Farman, C., Naveed I., He, Y. (2020). Solution of optimal reactive power dispatch with FACTS devices: A survey. Energy Reports, Vol. 6, pp. 2211-2229, doi: 10.1016/j.egyr.2020.07.030.
  27. Das, T., Roy, R., Mandal, K. (2021). Solving optimal reactive power dispatch problem with the consideration of load uncertainty using modified JAYA algorithm. International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 2021, pp. 1-6, doi: 10.1109/ICAECT49130.2021.9392508.
  28. Das, T., Roy, R., Mandal, K. K. (2021). Integrated PV system with optimal reactive power dispatch for voltage security using JAYA algorithm. 7th International Conference on Electrical Energy Systems (ICEES), 2021, pp. 56-61, doi: 10.1109/ICEES51510.2021.9383711.
  29. Muhammad, Y., Akhtar, R., Khan, R. et al. (2021). Design of fractional evolutionary processing for reactive power planning with FACTS devices. Sci Rep, Vol. 11, 593, doi: 10.1038/s41598-020-79838-2.
  30. Shanono, I. H., Muhammad, A., Abdullah, N. R. H. et al. (2021). Optimal reactive power dispatch: A bibliometric analysis. Journal of Electrical Systems and Inf Technol, Vol. 8(1), doi: 10.1186/s43067-020-00024-5.
  31. Tudose, A. M., Picioroaga, I. I., Sidea, D. O., Bulac, C. (2021). Solving single- and multi-objective optimal reactive power dispatch problems using an improved salp swarm algorithm. Energies, Vol. 14(5), 1222, doi: 10.3390/en14051222.
  32. Gholizadeh, S., Sojoudizadeh, R. (2019). Modified sine-cosine algorithm for sizing optimization of truss structures with discrete design variables. Iran Univ. Sci. Technol., Vol. 9(2), pp. 195-212.
  33. Tizhoosh, H. R. (2005). Opposition-based learning: a new scheme for machine intelligence. International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), 2005, pp. 695-701, doi: 10.1109/CIMCA.2005.1631345.
  34. Reddy, S. S. (2017). Optimal reactive power scheduling using cuckoo search algorithm. International Journal of Electrical and Computer Engineering, Vol. 7(5), pp. 2349-2356.
  35. Reddy, S. S. (2014). Faster evolutionary algorithm based optimal power flow using incremental variables. Electrical Power and Energy Systems, Vol. 54, pp. 198-210.

Full Text