Rheological Properties of Superparamagnetic Iron Oxide Nanoparticles | Journal of Engineering Sciences

Rheological Properties of Superparamagnetic Iron Oxide Nanoparticles

Author(s): Javanbakht T.1*, Laurent S.2, 3, Stanicki D.2, Salzmann I.1

Affiliation(s):
1 Department of Chemistry and Biochemistry, Department of Physics, Concordia University, Richard J. Renaud Science Complex, 7141, Sherbrooke St., Montreal, Quebec, Canada;
2 Laboratory of NMR and Molecular Imaging, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium;
3 Center for Microscopy and Molecular Imaging (CMMI), 6041, Gosselies St., Belgium.

*Corresponding Author’s Address: [email protected]

Issue: Volume 8, Issue 1 (2021)

Dates:
Received: March 25, 2021
The final version received: June 18, 2021
Accepted for publication: June 23, 2021

Citation:
Javanbakht T., Laurent S., Stanicki D., Salzmann I. (2021).Rheological properties of superparamagnetic iron oxide nanoparticles. Journal of Engineering Sciences, Vol. 8(1), pp. C29–C37, doi: 10.21272/jes.2021.8(1).c4

DOI: 10.21272/jes.2021.8(1).c4

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. The present study focuses on the rheological properties of polyethylene glycol (PEG) modified, positively charged, and negatively charged superparamagnetic iron oxide nanoparticles (SPIONs) at different temperatures. We hypothesized that the surface properties of these nanoparticles in the water did not affect their rheological properties. These nanoparticles had not the same surface properties as SPIONs-PEG had not to charge on their surface whereas positively charged and negatively charged ones with amine and carboxyl groups as their surfaces had positive and negative surface charges, respectively. However, their rheological behaviors were not different from each other. The comparative rheological study of SPIONs revealed their pseudo-Newtonian behavior. The viscosity of SPIONs decreased with the increase in temperature. At low shear rates, the shear stress of SPIONs was independent of rate and increased with the increase of rate. Moreover, at high shear rates, the shear stress for PEG-SPIONs was more than those for positively charged and negatively charged SPIONs. These measurements also revealed that at high shear rates, the shear stress of samples decreased with the increase of temperature. The shear stress of samples decreased with the increase of shear strain and the temperature. We also observed that all the samples had the same amount of shear strain at each shear stress, which indicated the exact resistance of SPIONs to deformation. Furthermore, the shear modulus decreased with time for these nanoparticles. These results suggest that these nanoparticles are promising candidates with appropriate properties for fluid processing applications and drug vectors in biomedical applications.

Keywords: rheology, SPIONs, nanomaterials, surface charge, mechanical engineering.

References:

  1. Rosensweig, R. W. (1985). Ferrohydrodynamics (Cambridge Monographs on Mechanics and Applied Mathematics). Cambridge, Cambridge University Press.
  2. Sabale, S., Kandesar, P., Jadhav, V., Komorek, R., Motkuri, R. K., Yu, W.-Y. (2017). Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Biomaterials Science. Vol. 5(11), pp. 2212–2225. https://doi.org/10.1039/c7bm00723j.
  3. Lin, M. M., Kim, D. K., Haj, A. J. E., Dobson, J. (2009). Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Transactions on NanoBioscience, Vol. 7(4), pp. 298–305. https://doi.org/10.1109/TNB.2008.2011864.
  4. Kaushik, S., Thomas, J., Panwar, V., Ali, H., Chopra, V., Sharma, A., Tomar, R., Ghosh, D. (2020). In situ biosynthesized superparamagnetic iron oxide nanoparticles (SPIONS) induce efficient hyperthermia in cancer cells. ACS Applied Bio Materials, Vol. 3(2), pp. 779–788. https://doi.org/10.1021/acsabm.9b00720.
  5. Wahajuddin, A. S. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, Vol. 7, pp. 3445–3471. https://doi.org/10.2147/IJN.S30320.
  6. Chiu, W., Khiew, P., Cloke, M., Isa, D., Lim, H., Tan, T., Huang, N., Radiman, S., Abd-Shukor, R., Hamid, M.A.A., Chia, C. (2010). Heterogeneous seeded growth: synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals. Journal of Physical Chemistry C, Vol. 114(18), pp. 8212–8218. https://doi.org/10.1021/jp100848m.
  7. Graczyk, H., Bryan, L. C., Lewinski, N., Suarez, G., Coullerez, G., Bowen, P., Riediker, M. (2015). Physicochemical Characterization of NebulizedSuperparamagnetic Iron Oxide Nanoparticles (SPIONs). Journal of Aerosol Medicine and Pulmonary Drug Delivery, Vol. 28(1), pp. 43–51. https://doi.org/10.1089/jamp.2013.1117.
  8. Mieloch, A. A., Zurawek, M., Giersig, M., Roswadowska, N., Rybka, J. D. (2020). Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with dihexadecyl phosphate (DHP). Scientific Reports, Vol. 10(1), 2725. https://doi.org/10.1038/s41598-020-59478-2.
  9. Belanova, A. A., Gavalas, N., Makarenko, Y. M., Belousova, M. M., Soldatov, A. V., Zolotukhin, P. V. (2018). Physicochemical properties of magnetic nanoparticles: implications for biomedical applications in vitro and in vivo. Oncology Research and Treatment, Vol. 41(3), pp. 139–143. https://doi.org/10.1159/000485020.
  10. Javanbakht, T., Laurent, S., Stanicki, D., Frenette, M. (2020). Correlation between physicochemical properties of superparamagnetic iron oxide nanoparticles and their reactivity with hydrogen peroxide. Canadian Journal of Chemistry, Vol. 98(10), pp. 601–608. https://doi.org/10.1139/cjc-2020-0087.
  11. Javanbakht, T., Laurent, S., Stanicki, D., David, E. (2019). Related physicochemical, rheological, and dielectric properties of nanocomposites of superparamagnetic iron oxide nanoparticles with polyethyleneglycol. Journal of Applied Polymer Science, Vol. 137(3), pp. 48280–48289. https://doi.org/10.1002/app.48280.
  12. Grancharov, S. G., Zeng, H., Sun, S. H., Wang, S. X., O’Brien, S., Murray, C. B., Kirtley, J. R.  G., Held, A. (2005). Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. Journal of Physical Chemistry B, Vol. 109(26), pp. 13030–13035. https://doi.org/10.1021/jp051098c.
  13. Hans, M. L., Lowman, A. M. (2002). Biodegradable Nanoparticles for Drug Delivery and Targeting. Current Opinion in Solid State and Materials Science, Vol. 6(4), pp. 319–327. https://doi.org/10.1016/S1359-0286(02)00117-1.
  14. Solar, P., González, G., Vilos, C., Herrera, N., Juica, N., Moreno, M., Simon, F., Velásquez, L. (2015). Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties. Journal of Nanobiotechnology, Vol. 13(14), pp. 14–25. https://doi.org/10.1186/s12951-015-0077-5.
  15. Andrade, A., Ferreira, R., Fabris, J., Domingues, R. (2011). Coating Nanomagnetic Particles for Biomedical Applications. Biomedical engineering – Frontiers and Challenges, North Dakota, University of North Dakota.
  16. Qu, Y., Duan, X. (2013). Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews, Vol. 42(7), pp. 2568–2580. https://doi.org/10.1039/C2CS35355E.
  17. Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment, Vol. 424, pp. 1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023.
  18. Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., He, J. (2013). Visible light driven type II heterostructures and their enhances photocatalysis properties: a review. Nanoscale, Vol. 5(18), pp. 8326–8339. https://doi.org/10.1039/c3nr01577g.
  19. Boxall, C., Kelsall, G. Zhang, Z. (1996). Photoelectrophoresis of colloidal iron oxides. Part 2. – Magnetite (Fe3O4). Journal of the Chemical Society, Faraday Transactions. Vol. 92(5), pp. 791–802. https://doi.org/10.1039/FT9969200791.
  20. Brullot, W., Reddy, N. K., Wouters, J., Valev, V. K., Goderis, B., Vermant, J., Verbiest, T. (2012). Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, Vol. 324(11), pp. 1919–1925. https://doi.org/10.1016/j.jmmm.2012.01.032.
  21. Gonçalves, L. C., Seabra, A. B., Pelegrino, M. T., de Araujo, D. R., Bernardes, J. S., Haddad, P. S. (2017). Superparamagnetic iron oxide nanoparticles dispersed in Pluronic F127 hydrogel: potential uses in topical applications. RSC Advances, Vol. 7(24), pp. 14496–14503. https://doi.org/10.1039/C6RA28633J.
  22. Nejatpour, M., Unal, U., Acar, H. Y. (2020). Bidisperse magneto-rheological fluids consisting of functional SPIONs added to commercial MRF. Journal of Industrial and Engineering Chemistry, Vol. 91, pp. 25, 110–120. https://doi.org/10.1016/j.jiec.2020.07.040.
  23. Yoon, K. Y. (2012). The Design and Control of Stability and Magnetic Properties of Imaging Nanoparticles. PhD thesis, University of Texas, Austin.
  24. Socoliuc, V., Bica, D., Vekas, L. (2011). Magnetically induced phase condensation with asymptotic critical temperature in an aqueous magnetic colloid. Magnetohydrodynamics, Vol. 47(2), pp. 201–206. https://doi.org/10.22364/mhd.47.2.12.
  25. Stanicki, D., Boutry, S., Laurent, S., Wacheul, L., Nicolas, E.. Crombez, D., Elst, L. V., Lafontaine, D. L. J., Muller, R. N. (2014). Carboxy-silane coated iron oxide nanoparticles: A convenient platform for cellular and small animal imaging. Journal of Materials Chemistry B, Vol. 2(4), pp. 387–397. https://doi.org/10.1039/C3TB21480J.
  26. Cu, Y., Saltzman, W. M. (2009). Controlled Surface Modification With Poly(ethylene)glycol Enhances Diffusion of PLGA Nanoparticles in Human Cervical Mucus. Molecular Pharmacology, Vol. 6(1), pp. 173–181. https://doi.org/10.1021/mp8001254.
  27. Fathurrohman, M. I., Maspanger, D. R., Sutrisno, S. (2015). Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation. Bulletin of Chemical Reaction Engineering and Catalysis, Vol. 10(2), pp. 104–110. https://doi.org/10.9767/bcrec.10.2.6682.104-110.
  28. Javanbakht, T., Ghane-Motlah, B., Sawan, M. (2020). Comparative study of antibiofilm activity and physicochemical properties of microelectrode arrays. Microelectronic Engineering, Vol. 229, 111305. https://doi.org/10.1016/j.mee.2020.111305.
  29. Haward, S. J., McKinley, J. H. (2012). Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment. Physical Review E, Vol. 85(3), 031502. https://doi.org/10.1103/PhysRevE.85.031502.
  30. Jamali, S., Armstrong, R. C., Mc Kinley, G. H. (2019). Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear. Physical Review Letters, Vol. 123(24), 248003. https://doi.org/10.1103/PhysRevLett.123.248003.
  31. Liu, Z. Y., Wang, G., Chan, K. C., Ren, J. L., Huang, Y. J. Bian, X. L., xu, X. H., Zhang, D. S., Gao, Y. L., Zhai, Q. J. (2013). Temperature dependent dynamics transition of intermittent plastic flow in a metallic glass. I. Experimental investigations. Journal of Applied Physics, Vol. 114, 033520. https://doi.org/10.1063/1.4815943.
  32. Chen, H. J., Wang, Y. M., Qu, J. M., Hong, R. Y., Li, H. Z. (2011). Preparation and characterization of silicon oil based ferrofluid. Applied Surface Science, Vol. 257(24), pp. 10802–10807. https://doi.org/10.1016/j.apsusc.2011.07.103.
  33. Han, D., Meng,, Z., Wu, D., Zhang, C., Zhu, H. (2011). Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Research Letters, Vol. 6(1), pp. 457. https://doi.org/doi:10.1186/1556-276X-6-457.
  34. Barnes, H.A. (1989). Shear‐Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids. Journal of Rheology, Vol. 33(2), pp. 329–366. https://doi.org/10.1122/1.550017.
  35. Vu-Bac, N., Areias, P., Rabczuk, T. (2016). A multiscale multisurface constitutive model for the thermo-plastic behavior of polyethylene. Polymer, Vol. 105, pp. 327–338. https://doi.org/10.1016/j.polymer.2016.10.039.
  36. Yang, M. C., Scriven, L. E., Makosco, C. W. (1986). Some rheological measurements on magnetic iron oxide suspensions in silicone oil. Journal of Rheology, Vol. 30(5), pp. 1015–1029. https://doi.org/10.1122/1.549892.
  37. Chen, T. -H., Tsai, C. -K., Fang, T. -H. (2013). Dynamic shear characteristic and fracture fature of inconel 690 alloy under different high strain rates and temperatures. Advances in Material Science and Engineering, Vol. 2013, 382503. https://doi.org/10.1155/2013/382503.
  38. Sumith, S., Sangam, K., Kannan, K., Shankar, K. (2020). Prediction of nonlinear viscoelastic behaviour of simulative soil for deep-sea sediment using a thermodynamically compatible model. Inverse Problems in Science and Engineering, Vol. 28(6), pp. 1741–5977. https://doi.org/10.1080/17415977.2019.1648452.
  39. Todd, T. P. (1973). Effect of cracks on elastic properties of low porosity rocks. PhD thesis, University of Toronto.
  40. Hua, X., Wang, L., Yang, S. (2019). Molecular dynamics simulation of improving the physical properties of polytetrafluoroethylene cable insulation materials by boron nitride nanoparticle under moisture-temperature-electric fields conditions. Polymers, Vol. 11(6), pp. 971–985. https://doi.org/10.3390/polym11060971.
  41. Durymanov, M. O., Rosenkranz, A. A, Sobolev, A. S. (2015). Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics, Vol. 5(9), pp. 1007–1020. https://doi.org/10.7150/thno.11742.
  42. Hussain, D. H., Abdulah, H. I., Rheima, A. M. (2016). Synthesis and characterization of ɣ-Fe2O3 nanoparticles photoanodeby novel method for dye sensitized solar cell. International Journal of Scientific Research and Publications, Vol. 6(10), pp. 26–31.
  43. Cai, F., Zhang, S., Yuan, Z. (2015). Effect of magnetic gamma-iron oxide nanoparticles on the efficiency of dye-sensitized solar cells. RSC Advances, Vol. 5(53), pp. 42869–42874. https://doi.org/10.1039/C5RA05936D.
  44. Tuharin, K., Turek, Z., Zanáška, M., Kudrna, P., Tichý, M. (2020). Iron oxide and iron sulfide films prepared for dye-sensitized solar cells. Materials, Vol. 13(8), 1797. https://doi.org/doi:10.3390/ma13081797.
  45. Tharwat, M. M., Almalki, A., Mahros, A. M. (2021). Plasmon-enhanced sunlight harvesting in thin-film solar cell by randomly distributed nanoparticle array. Materials, Vol. 14(6), 1380. https://doi.org/10.3390/ma14061380.
  46. Ghane-Motlagh, B., Javanbakht, T., Shoghi, F., Wilkinson, K. J., Martel, R., Sawan, M. (2016). Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells. Materials Science and Engineering C, Vol. 68, pp. 642–650. https://doi.org/10.1016/j.msec.2016.06.045.
  47. Djavanbakht, T., Carrier, V., André, J. -M., Barchewitz, R., Troussel, P. (2000). Effets d’un chauffage thermique sur les performances de miroirs multicouches Mo/Si, Mo/C et Ni/C pour le rayonnement X mou. Journal de Physique IV France, Vol. 10, pp. 281–287. https://doi.org/10.1051/jp4:20001031.
  48. Tsutsumi, Y., Niinomi, M., Nakai, M., Shimabukuro, M., Ashida, M., Chen, P., Doi, H., Hanawa, T. (2016). Electrochemical surface treatment of a β-titanium alloy to realize an antibacterial property and bioactivity. Metals, Vol. 6(4), 76. https://doi.org/10.3390/met6040076.
  49. Kiran, A. S. K., Sireesha, M., Ramalingam, R., Kizhakeyil, A., Verma, N. K., Lakshminarayanan, R., Kumar, T. S. S., Doble, M., Ramakrishna, S. (2019). Modulation of biological properties by grain refinement and surface modification on titanium surfaces for implant-related infections. Journal of Materials Science, Vol. 54(20), pp. 13265–13282. https://doi.org/10.1007/s10853-019-03811-2.
  50. Javanbakht, T., Bérard, A., Tavares, J. R. (2016). Polyethylene glycol and poly (vinyl alcohol) hydrogels treated with photo-initiated chemical vapor deposition. Canadian Journal of Chemistry, Vol. 94(9), pp. 744–750. https://doi.org/10.1139/cjc-2016-0229.
  51. Javanbakht, T., David, E. (2020). Rheological and physical properties of a nanocomposite of graphene oxide nanoribbons with polyvinyl alcohol. Journal of Thermoplastic Composite Matererials, 0892705720912767. https://doi.org/10.1177/0892705720912767.
  52. Javanbakht, T., Hadian, H., Wilkinson, K. J. (2020). Comparative study of physicochemical properties and antibiofilm activity of graphene oxide nanoribbons. Journal of Engineering Sciences, Vol. 7(1), pp. C1–C8. https://doi.org/10.21272/jes.2020.7(1).c1.
  53. Javanbakht, T., Sokolowski, W. (2015). Thiolene/Acrylate Systems for Biomedical Shape-Memory Polymers in Shape Memory Polymers for Biomedical Applications (Ed. L’H Yahia), pp. 157–166, Sawston, Cambridge, Woodhead Publishing.
  54. Sicilia, G., Grainger-Boultby, C., Francini, N., Magnusson, J. P., Saeed, A. O., Fernández-Trillo, F., Spain, S. G., Alexander, C. (2014). Programmable polymer-DNA hydrogels with dual input and multiscale responses. Biomaterial Sciences, Vol. 2, pp. 203–211. https://doi.org/10.1039/C3BM60126A.
  55. Bravo-Anaya, L. M., Pignon, F., Martínez, F. A. S., Rinaudo, M. (2016). Rheological properties of DNA molecules in solution: molecular weight and entanglement influences. Polymers, Vol. 8(8), 279. https://doi.org/10.3390/polym8080279.
  56. Djavanbakht, T., Jolès, B., Laigle, A. (2000). Intracellular stability of antisense oligonucleotides protected by the d(GCGAAGC). Biomedical Society Transactions, Vol. 28, p. A201. https://doi.org/10.1042/bst028a201c.
  57. Murray, B. S. (2011). Rheological properties of protein films. Current Opinion in Colloid and Interface Science, Vol. 16(1), pp. 27–35. https://doi.org/10.1016/j.cocis.2010.06.005.
  58. Farina, A., Fasano, A., Rossi, F. (2021). Mathematical models for some aspects of blood microcirculation. Symmetry, Vol. 13, 1020. https://doi.org/10.3390/sym13061020.
  59. Hijikata, W., Rao, J., Abe, S., Takatani, S., Shinshi, T. (2015). Estimating flow rate using the motor torque in a rotary blood pump. Sensors and Materials, Vol. 27(4), pp. 297–308. https://doi.org/10.18494/SAM.2015.1128.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU