Specified Parameters in Designing Porous Materials Using Magnetic Nanotechnologies

Author(s): Riabchykov M.1, Furs T.1*, Alexandrov A.2, Tsykhanovska I.2, Hulai O.1, Shemet V.1

1 Lutsk National Technical University, 75, Lvivska St., 43018 Lutsk, Ukraine;
2 Ukrainian Engineering Pedagogics Academy, 16, Universitetska St., 61003 Kharkiv, Ukraine

*Corresponding Author’s Address: [email protected]

Issue: Volume 10, Issue 2 (2023)

Submitted: May 25, 2023
Received in revised form: September 18, 2023
Accepted for publication: September 27, 2023
Available online: September 29, 2023

Riabchykov M., Furs T., Alexandrov A., Tsykhanovska I., Hulai O., Shemet V. (2023) Specified parameters in designing porous materials using magnetic nanotechnologies. Journal of Engineering Sciences (Ukraine), Vol. 10(2), pp. C56–C62. DOI: 10.21272/jes.2023.10(2).c7

DOI: 10.21272/jes.2023.10(2).c7

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. The research is devoted to solving the problem of regulating the porosity parameters during the manufacturing process under magnetic field conditions. The process of synthesizing magnetic nanocomponents based on a mixture of divalent and trivalent iron oxides was given. The use of nanocomponents allowed for improving the conditions for creating porous materials. A device with adjustable magnetic induction was developed to produce porous materials in a magnetic field. The study of the porous material’s structure with the nanopowder content in the magnetic field conditions showed a clear dependence of the structure on the magnetic parameters. When the content of nanocomponents increased to 0.3 %, and the magnetic field induction increased to 2.5 mT, the dispersion of pore sizes decreased by 8–10 times, the density of pores – increased by 15–20 times, and the average diameter of pores – decreased by 12–15 times. Mathematical dependencies that determine the porosity parameters for different values of the magnetic nanopowder content and the level of magnetic induction in the ring electromagnet were proposed. The obtained dependencies allowed for assigning the level of magnetic technological parameters to ensure the given porosity parameters. The developed methods of magnetic technology for creating porous materials can increase the quality and ensure the required porosity level.

Keywords: nanomaterials, porous structure, magnetic technologies, size dispersion.


  1. Javanbakht, T. (2023). Optimization of graphene oxide’s characteristics with TOPSIS using an automated decision-making process. Journal of Engineering Sciences (Ukraine), Vol. 10(1), pp. E1–E7. https://doi.org/10.21272/jes.2023.10(1).e1
  2. Pazini, A., Maqueira, L., Façanha, J. M. F., Pérez-Gramatges, A. (2023). Synthesis of core-shell fluorescent silica nanoparticles with opposite surface charges for transport studies of nanofluids in porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 670, 131586. https://doi.org/10.1016/j.colsurfa.2023.131586
  3. Monie, F., Vidil, T., Grignard, B., Cramail, H., Detrembleur, C. (2021). Self-foaming polymers: Opportunities for the next generation of personal protective equipment. Materials Science and Engineering: R: Reports, Volume 145, 100628. https://doi.org/10.1016/j.mser.2021.100628
  4. Suethao, S, Shah, D. U., Smitthipong, W. (2020). Recent progress in processing functionally graded polymer foams. Materials, Vol. 13(18), 4060. https://doi.org/10.3390/ma13184060
  5. Pavlenko, I., Ochowiak, M., Włodarczak, S., Krupińska, A., Matuszak, M. (2023). Parameter identification of the fractional-order mathematical model for convective mass transfer in a porous medium. Membranes, Vol. 13(10), 819. https://doi.org/10.3390/membranes13100819
  6. Li, W., Jiang, Y., Liu, H., Wang, C., He, X, He, F., Li, M. (2023). Mullite fibers/whiskers hierarchical porous materials: Experimental characterization and fractal model to predict thermal conductivity. Ceramics International, Vol. 49(9A), pp. 13657–13665. https://doi.org/10.1016/j.ceramint.2022.12.243
  7. Yang, F., Chai, R., Zhang, J. (2023). Construction of a multi-scale microporous structure in EVA matrix toward passive cooling roofs. Journal of Physics and Chemistry of Solids, Vol. 178, 111358. https://doi.org/10.1016/j.jpcs.2023.111358
  8. Wang, J., Guo, Y., Luo, C., Chen, H., Pi, W., Liu, B., Yao, N., Qiu, J., Zeng, Z., Li, L. (2023). Theory-guided preparation of pore size tunable porous carbon for efficient adsorption and separation of the light hydrocarbons. Applied Surface Science, Vol. 623, 156941. https://doi.org/10.1016/j.apsusc.2023.156941
  9. Yan, B., Zheng, J., Feng, L., Zhang, Q., Zhang, C., Ding, Y., Han, J., Jiang, S., He, S. (2023). Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials. Materials and Design, Vol. 229, 111904. https://doi.org/10.1016/j.matdes.2023.111904
  10. Rastegardoost, M. M., Tafreshi, O. A., Saadatnia, Z., Ghaffari-Mosanenzadeh, S., Park, C. B., Naguib, H. E. (2023). Recent advances on porous materials and structures for high-performance triboelectric nanogenerators. Nano Energy, Vol. 111, 108365. https://doi.org/10.1016/j.nanoen.2023.108365
  11. Zhang, M., Xia, X., Zhang, L., Zhao, G., Liu, C., Li, N., Xu, J., Chen, Y., Jian, X. (2023). Design of healable, porous polyurethane with large ionic liquids loading amounts towards ultra-durable pressure sensor. European Polymer Journal, Vol. 191, 112018. https://doi.org/10.1016/j.eurpolymj.2023.112018
  12. Wang, J., Zhang, K., Bogaerts, A., Meynen, V. (2023). 3D porous catalysts for plasma-catalytic dry reforming of methane: How does the pore size affect the plasma-catalytic performance? Chemical Engineering Journal, Vol. 464, 142574. https://doi.org/10.1016/j.cej.2023.142574
  13. Morovvati, M. R., Angili, S. N., Saber-Samandari, S., Nejad, M. G., Toghraie, D., Khandan, A. (2023). Global criterion optimization method for improving the porosity of porous scaffolds containing magnetic nanoparticles: Fabrication and finite element analysis. Materials Science and Engineering: B, Vol. 292, 116414. https://doi.org/10.1016/j.mseb.2023.116414
  14. Jia, X., Hua, C., Yang, F., Li, X., Zhao, P., Zhou, F., Lu, Y., Liang, H., Xing, M., Lyu, G. (2023). Hydrophobic aerogel-modified hemostatic gauze with thermal management performance. Bioactive Materials, Vol. 26, pp. 142–158. https://doi.org/10.1016/j.bioactmat.2023.02.017
  15. Riabchykov, M., Tkachuk, O., Nazarchuk, L., Alexandrov, A. (2023). Conditions for the open pores formation in medical textile materials for the treatment of wounds using iron oxide nanopowders. Materials Research Express, Vol. 10(1), 015401. https://doi.org/10.1088/2053-1591/acadcf
  16. Vazic, B., Newell, P. (2023). Towards the design of nature-inspired materials: Impact of complex pore morphologies via higher-order homogenization. Mechanics of Materials, Vol. 181, 104641. https://doi.org/10.1016/j.mechmat.2023.104641
  17. Alazab, A. A., Saleh, T. A. (2022). Magnetic hydrophobic cellulose-modified polyurethane filter for efficient oil-water separation in a complex water environment. Journal of Water Process Engineering, Vol. 50, 103125. https://doi.org/10.1016/j.jwpe.2022.103125
  18. Bury, E., Thiagarajan, S., Lazarus, N., Koh, A. (2022). Ferrofluid high internal phase emulsion polymer foams for soft, magnetic materials. Journal of Magnetism and Magnetic Materials, Vol. 563, 169921. https://doi.org/10.1016/j.jmmm.2022.169921
  19. Xu, X., Tian, X., Bo, G., Su, X., Yan, J., Yan, Y. (2022). Synthesis of lightweight renewable microwave-absorbing bio-polyurethane/Fe3O4 composite foam: Structure analysis and absorption mechanism. International Journal of Molecular Sciences, Vol. 23(20), 12301. https://doi.org/10.3390/ijms232012301
  20. Yang, J., Zhang, W., Ge, X. (2022). Preparation and magneto-mechanical properties of 3D microporous magnetorheological foam. Journal of Intelligent Material Systems and Structures, Vol. 34(11), pp. 1305–1313. https://doi.org/10.1177/1045389X221131808
  21. Muhazeli, N. S., Nordin, N. A., Mazlan, S. A., Abdul Aziz, S. A., Nazmi, N. (2021). Mini review: An insight on the fabrication methods of smart magnetic polymer foam. Journal of Magnetism and Magnetic Materials, Vol. 534, 168038. https://doi.org/10.1016/j.jmmm.2021.168038
  22. Riabchykov, M., Alexandrov, A., Sychov, Y., Popova, T., Nechipor, S. (2021). Magnetic nanotechnology in the production of foamed textile materials for medical purposes. Fibres and Textiles, Vol. 28 (3), pp. 66–71.
  23. Jelitto, H., Schneider, G. A. (2020). Extended cubic fracture model for porous materials and the dependence of the fracture toughness on the pore size. Materialia, Vol. 12, 100761. https://doi.org/10.1016/j.mtla.2020.100761
  24. Bharati, A., Bao Chi, K., Trunov, D., Sedlářová, I., Belluati, A., Šoóš, M. (2023). Effective lipase immobilization on crosslinked functional porous polypyrrole aggregates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 667, 131362. https://doi.org/10.1016/j.colsurfa.2023.131362
  25. Bazan, P., Łach, M., Kozub, B., Figiela, B., Korniejenko, K. (2023). The production process of foamed geopolymers with the use of various foaming agents. In: da Silva, L.F.M. (eds) Materials Design and Applications IV. Advanced Structured Materials, Vol. 168. Springer, Cham. https://doi.org/10.1007/978-3-031-18130-6_5
  26. Park, B. K., Kim, C.-J., Kwon, D. E., Lee, Y. W. (2020). Design and fabrication of partially foamed grid structure using additive manufacturing and solid state foaming. Processes, Vol. 8(12), 1594. https://doi.org/10.3390/pr8121594
  27. Maciejewska, M., Józwicki, M, (2023). Porous polymers based on 9,10-bis(methacryloyloxymethyl)anthracene – Towards synthesis and characterization. Materials, Vol. 16(7), 2610. https://doi.org/10.3390/ma16072610
  28. Raje, A., Georgopanos, P., Koll, J., Lillepärg, J., Handge, U. A., Abetz, V. (2023). Open-celled foams from polyethersulfone/poly(ethylene glycol) blends using foam extrusion. Polymers, Vol. 15(1), 118. https://doi.org/10.3390/polym15010118
  29. Mert, H. H., Mert, E. H. (2022). Emulsion templated hierarchical macroporous polymers. In: Uthaman, A., Thomas, S., Li, T., Maria, H. (eds) Advanced Functional Porous Materials. Engineering Materials, pp. 43–86. Springer, Cham. https://doi.org/10.1007/978-3-030-85397-6_3
  30. Seyrek, Y., Rudic, O., Mittermayr, F., Grengg, C., Freytag, B., Juhart, J. (2023). Impact of humidity and vegetable oil addition on mechanical properties and porosity of geopolymers. Cement and Concrete Composites, Vol. 140, 105083. https://doi.org/10.1016/j.cemconcomp.2023.105083
  31. Amato, D. N., Amato, D. V., Sandoz, M., Weigand, J., Patton, D. L., Visser, C. W. (2020). Programmable porous polymers via direct bubble writing with surfactant-free inks. ACS Applied Materials and Interfaces, Vol. 12(37), pp. 42048–42055. https://doi.or/org/10.1021/acsami.0c07945
  32. Vakil, A. U., Petryk, N. M., Du, C., Howes, B., Stinfort, D., Serinelli, S., Gitto, L., Ramezani, M., Beaman, H. T., Monroe, M. B. (2023). In vitro and in vivo degradation correlations for polyurethane foams with tunable degradation rates. Journal of Biomedical Materials Research. Part A, Vol. 111(5), pp. 580–595. https://doi.org/10.1002/jbm.a.37504
  33. Holt, J. A., Torres-Sanchez, C., Conway, P. P. (2021). Monitoring the continuous manufacture of a polymeric foam via a thermokinetic-informed acoustic technique. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 235(6), pp. 1998–2007. https://doi.org/10.1177/09544089211026549
  34. Abitaev, K., Qawasmi, Y., Atanasova, P., .Dargel, C., Bill, J., Hellweg, T., Sottmann, T. (2021) Adjustable polystyrene nanoparticle templates for the production of mesoporous foams and ZnO inverse opals. Colloid Polym Sci 299, 243–258. https://doi.org/10.1007/s00396-020-04791-5
  35. Kim, S. Y., Sesso, M. L., Franks, G. V. (2022). In-situ 4-point flexural testing and synchrotron micro X-ray computed tomography of 3D printed hierarchical-porous ultra-high temperature ceramic. Additive Manufacturing, Vol. 54, 102728. https://doi.org/10.1016/j.addma.2022.102728
  36. Kanani, A. Y., Rennie, A. E. W., Bin Abd Rahim, S. Z. (2023) Additively manufactured foamed polylactic acid for lightweight structures. Rapid Prototyping Journal, Vol. 29(1), pp. 50–66. https://doi.org/10.1108/RPJ-03-2022-0100
  37. Mittal, A., Roy, I., Gandhi, S. (2022). Magnetic nanoparticles: An overview for biomedical applications. Magnetochemistry, Vol. 8, 107. https://doi.org/10.3390/magnetochemistry8090107
  38. Ghosal, K., Chatterjee, S., Thomas, S., Roy, P. (2023). A detailed review on synthesis, functionalization, application, challenges, and current status of magnetic nanoparticles in the field of drug delivery and gene delivery system. AAPS PharmSciTech, Vol. 24, 25. https://doi.org/10.1208/s12249-022-02485-5
  39. Javanbakht, T., Laurent, S., Stanicki, D., Salzmann, I. (2021). Rheological properties of superparamagnetic iron oxide nanoparticles. Journal of Engineering Sciences (Ukraine), Vol. 8(1), pp. C29–C37. https://doi.org/10.21272/jes.2021.8(1).c4

Full Text

© 2023 by the author(s).

This work is licensed under Creative Commons Attribution-Noncommercial 4.0 International License