The Correction of the Dimensionless Equation for the Mass Transfer Coefficient Estimation during the Membrane Modules Regeneration | Journal of Engineering Sciences

The Correction of the Dimensionless Equation for the Mass Transfer Coefficient Estimation during the Membrane Modules Regeneration

Author(s): Huliienko S. V.1*, Korniienko Y. M.1, Metlina M. S.1, Tereshenko I. Y.1, Kaminskyi V. S.2

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremohy Ave., 03056 Kyiv, Ukraine;
2 Technical University of Kosice, 9, Letna St., 042 00 Kosice, Slovak Republic

*Corresponding Author’s Address:

Issue: Volume 7, Issue 2 (2020)

Paper received: September 27, 2020
The final version of the paper received: December 12, 2020
Paper accepted online: December 21, 2020

Huliienko S. V., Korniienko Y. M., Metlina M. S., Tereshenko I. Y., Kaminskyi V. S. (2020). The correction of the dimensionless equation for the mass transfer coefficient estimation during the membrane modules regeneration. Journal of Engineering Sciences, Vol. 7(2), pp. F24–F29, doi: 10.21272/jes.2020.7(2).f4

DOI: 10.21272/jes.2020.7(2).f4

Research Area:  CHEMICAL ENGINEERING: Processes in Machines and Devices

Abstract. The cleaning or regeneration of fouled membrane modules is an essential procedure in the membrane equipment operation. Despite the development of some successful cleaning techniques, the predictions of the membrane separation process operation parameters after regeneration is still an unsolved problem. In our previous works, the attempt to develop the methodology of estimating the membrane productivity after the regeneration of the fouled spiral wound membrane modules by cleaning the subatmospheric pressure has been made. However, this methodology requires some improvement, including the correction of the dimensionless equation to calculate the mass transfer coefficient. In this work, a set of additional experiments was carried out, and the corrections of the mass transfer correlation were done using both new and previously obtained experimental data. As a result, the improved dimensionless equation was contained as Sh = 0.00045Re0.8Sc0.33(de/l). This equation is valid in the range of Reynolds number variation of 0.4–60.0 for the case of the regeneration of spiral wound modules and can be used for the prediction of the permeate flux after the regeneration procedure.

Keywords: reverse osmosis, fouling, cleaning, mass transfer correlation, diffusion coefficient, Reynolds number, Schmidt number, Sherwood number.


  1. Tow E. W., Warsinger D. M., Trueworthy A. M., Swaminathan J., Thiel G. P., Zubair S. M., Myerson A. S., Lienhard V J. H. (2018). Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. Journal of Membrane Science. Vol. 556, pp. 352-364, doi: 10.1016/j.memsci.2018.03.065
  2. Qi Y., Tong T., Zhao S., Zhang W., Wang Zh., Wang J. (2020). Reverse osmosis membrane with simultaneous fouling- and scaling-resistance based on multilayered metal-phytic acid assembly. Journal of Membrane Science. Vol. 601. 117888. doi: 10.1016/j.memsci.2020.117888
  3. Shon H.K., Vigneswaran S., Cho J. (2008). Comparison of physico-chemical pretreatment methods to seawater reverse osmosis: Detailed analyses of molecular weight distribution of organic matter in initial stage. Journal of Membrane Science. Vol. 320, Issues 1–2, pp. 151-158, doi: 10.1016/j.memsci.2008.03.063
  4. Nguyen Th.-T., Kook S., Lee Ch., Field R. W., Kim I. S. (2019). Critical flux-based membrane fouling control of forward osmosis: Behavior, sustainability, and reversibility. Journal of Membrane Science. Vol. 570–571, pp. 380-393, doi: 10.1016/j.memsci.2018.10.062
  5. Jafari M., D’haese A., Zlopasa J., Cornelissen E.R., Vrouwenvelder J.S., Verbeken K., Verliefde A., van Loosdrecht M.C.M., Picioreanu C. (2020). A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes: Role of extracellular polymeric substances (EPS). Journal of Membrane Science. Vol. 609, 118189, doi: 10.1016/j.memsci.2020.118189
  6. Korniyenko Y., Guliienko S., Lialka M. (2015). Mathematical simulation of fouled membrane modules regeneration. Ukrainian Food Journal. 2015. Vol. 4. Is. 3, pp. 481-493.
  7. Fortunato, L., Alshahri, A. H., Farinha, A. S. F., Zakzouk, I., Jeong, S.,Leiknes, T. (2020). Fouling investigation of a full-scale seawater reverse osmosis desalination (SWRO) plant on the Red Sea: Membrane autopsy and pretreatment efficiency. Desalination. Vol. 496, 114536, doi: 10.1016/j.desal.2020.114536.
  8. Song W., Lee, L. Y., Liu E., Shi X., Ong S. L., Ng H. Y. Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge. Journal of Membrane Science, 609, 118185, doi: 10.1016/j.memsci.2020.118185
  9. Wu Y.-H., Tong X., Zhao X.-H., Bai Y., Ikuno N., Ishii K., Hu H.-Y. (2021). The molecular structures of polysaccharides affect their reverse osmosis membrane fouling behaviors. Journal of Membrane Science. In Press, Journal Pre-proof, 118984, doi: 10.1016/j.memsci.2020.118984
  10. Jafari M., Vanoppen M., van Agtmaal M.C., Cornelissen E.R., Vrouwenvelder J. S., Verliefde A., van Loosdrecht M.C.M., Picioreanu C. (2021). Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands, Desalination. 500, 114865, doi: 10.1016/j.desal.2020.114865
  11. Madaeni S.S., Samieirad S. (2010). Chemical cleaning of reverse osmosis membrane fouled by wastewater, Desalination. 257, pp. 80-86, doi: 10.1016/j.desal.2010.03.002
  12. Ibrahim S., Nagasawa H., Kanezashi M., Tsuru T. (2020). Chemical-free cleaning of fouled reverse osmosis (RO) membranes derived from bis(triethoxysilyl)ethane (BTESE), Journal of Membrane Science, 601, 117919, doi: 10.1016/j.memsci.2020.117919
  13. Li Y.-Sh., Shi L.-C., Gao X.-F., Huang J.-G. (2016). Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system, Desalination. 390, pp. 62-71, doi: 10.1016/j.desal.2016.04.008
  14. Dayarathne H.N.P., Choi J., Jang A. (2017). Enhancement of cleaning-in-place (CIP) of a reverse osmosis desalination process with air micro-nano bubbles, Desalination. Vol. 422, pp. 1-4, doi: 1016/j.desal.2017.08.002
  15. Lu , Hu Y., Xu D., Wu L. (2006). Optimum design of reverse osmosis seawater desalination system considering membrane cleaning and replacing, Journal of Membrane Science, Vol. 282, pp. 7–13, doi: 10.1016/j.memsci.2006.04.019
  16. Zhang L.-Zh., Li Zh.-X. (2013). Convective mass transfer and pressure drop correlations for cross-flow structured hollow fiber membrane bundles under low Reynolds numbers but with turbulent flow behaviors, Journal of Membrane Science, Vol. 434, pp. 65–73, doi: 1016/j.memsci.2013.01.058
  17. Cavaco Morão A., Brites Alves A., Geraldes V. (2008). Concentration polarization in a reverse osmosis/nanofiltration plate-and-frame membrane module, Journal of Membrane Science, Vol. 325, pp. 580–591, doi: 10.1016/j.memsci.2008.08.030
  18. Ren , Yang Y., Zhang W., Liu J., Wang H. (2013). Modeling study on the mass transfer of hollow fiber renewal liquid membrane: Effect of the hollow fiber module scale, Journal of Membrane Science, Vol. 434, pp. 65–73, doi: 10.1016/j.memsci.2013.03.030
  19. KoutsouaP., Yiantsios S.G., Karabelas A.J. (2009). A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number, Journal of Membrane Science, Vol. 326, pp. 234–251, doi: 10.1016/j.memsci.2008.10.007
  20. Huliienko S. V., Protsiuk O. O., Gatilov K. O., Kaminskyi V. S. (2019). The estimation of feed solution composition influence on concentration polarization layer resistance during reverse osmosis. Journal of Engineering Sciences, Vol. 6(2), pp. F24-F29, doi: 10.21272/jes.2019.6(2).f4.
  21. Huliienko S., Leshchenko O. (2020). Influence of operating pressure on concentration polarization layer resistance in revers osmosis, Ukrainian Food Journal, Vol. 8 (1), pp. 119-132, doi: 10.24263/2304- 974X-2019-8-1-13
  22. Nikolskij, B. (2013). Chemist’s Handbook, 3 – Chemical Equilibrium and Kinetics. Properties. Demand Ltd.
  23. Yaws, C. (1999), Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety and Heals Related Properties for Organic and Inorganic Chemicals. New York, McGraw-Hill.
  24. Dytnerskii, Iu. I. (1986). Baromembrane Processes. Theory and Calculation. Moscow, Chemistry.
  25. Perry (1997). Perry’s chemical engineering handbook (7th ed). New York, McGraw-Hill.

Full Text

© 2014-2021 Sumy State University.
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.