Vacuum High-Temperature Brazing of 3003 Aluminum Alloy | Journal of Engineering Sciences

Vacuum High-Temperature Brazing of 3003 Aluminum Alloy

Author(s): Makymova S. V.1*, Voronov V. V.1, Kovalchuk P. V.1, Shapiro A. Е.2

Affiliation(s):
1 E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11, K. Malevich St., 03150 Kyiv, Ukraine;
2 Ohio State University, 281, W. Lane Ave., Columbus, OH 43210, USA

*Corresponding Author’s Address: [email protected]

Issue: Volume 10, Issue 2 (2023)

Dates:
Submitted: May 3, 2023
Received in revised form: July 21, 2023
Accepted for publication: August 1, 2023
Available online: August 5, 2023

Citation:
Makymova S. V., Voronov V. V., Kovalchuk P. V., Shapiro A. Е. (2023). Vacuum high-temperature brazing of 3003 aluminum alloy. Journal of Engineering Sciences (Ukraine), Vol. 10(2), pp. C1–C10. DOI: 10.21272/jes.2023.10(2).c1

DOI: 10.21272/jes.2023.10(2).c1

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. Brazing filler metals based on the Al-Si system are widely used for brazing aluminum alloys. Their melting point is 577 °С (eutectic). It is necessary to conduct comprehensive studies of the technological properties of experimental filler metals and brazed joints to create a brazing filler metal with a reduced melting temperature for vacuum brazing of thin-walled aluminum products made of alloy 3003. The paper presents the research results on high-temperature vacuum brazing of aluminum alloy 3003 with Al-Cu-(Si, Mg) filler metal. It was determined that the amount of magnesium in the filler should be limited due to the risk of porosity formation associated with magnesium vaporization. It was identified that reducing the magnesium content increases the liquidus temperature above 530–550 °C. Therefore, experimental alloys require additional alloying with depressant elements, particularly silicon, to achieve the required melting temperature level. The chemical inhomogeneity of the filler in the initial state (after rapid solidification from the liquid state) and the structure of the brazed joints were investigated using micro-X-ray spectral analysis. Through empirical means, it was determined that a magnesium content of 1.5 % by weight in the filler allows for producing high-quality brazed joints without visible defects. In this case, shear strength is in the range of 0.6–0.7 of the strength of the base material. Tests of brazed joints for three-point bending resulted in an angle close to 180°, which indicates the promising use of experimental brazing filler metal in vacuum brazing of aluminum alloy 3003.

Keywords: vacuum brazing, aluminum alloy, filler metal, magnesium, microstructure.

References:

  1. Lacaze, J., Tierce, S., Lafont, M. C., Thebault, Y., Pebere, N., Mankowski, G., Blanc, C., Robidou, H., Vaumousse, D., Daloz, D. (2005). Study of the microstructure resulting from brazed aluminium materials used in heat exchangers. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol. 413, pp. 317–321. https://doi.org/10.1016/j.msea.2005.08.187
  2. Benoit, M. J., Ogunsanya, I. G., Winkler, S., Worswick, M. J., Wells, M. A., Hansson, C. M. (2021). Internal corrosion of warm formed aluminum alloy automotive heat exchangers. Journal of Materials Engineering and Performance, Vol. 30, pp. 2876–2889. https://doi.org/10.1007/s11665-021-05616-4
  3. Yuan, Z. P., Tu, Y. Y., Yuan, T., Huang, Y. H., Zhang, Y. H. (2021). Gradient multilayer aluminium sheets used in automotive heat exchangers. Journal of Materials Science, Vol. 56, pp. 5215–5232. https://doi.org/10.1007/s10853-020-05584-5
  4. Gao, Z., Qin, Z., Lu, Q. (2022). Controlled atmosphere brazing of 3003 aluminum alloy using low-melting-point filler metal fabricated by melt-spinning technology. Metals, Vol. 15, 6080. https://doi.org/10.3390/ma15176080
  5. Olson, D. L. (1993). ASM Handbook. Vol. 6: Welding, Brazing, and Soldering. ASM International, Materials Park, OH, USA.
  6. Ishhenko, A. J. (1991). Welding of the light alloys and composition materials. J. Avtomatychne Zvarjuvannja, Vol. 6, pp. 26–31.
  7. Ferraris, S., Perero, S., Ubertalli, G. (2019). Surface activation and characterization of aluminum alloys for brazing optimization. Coatings, Vol. 9(7), pp. 459–465. https://doi.org/10.3390/coatings9070459
  8. Orman, L., Swidersky, H.-W. (2014). Brazing of Aluminium Alloys with Higher Magnesium Content using Non-Corrosive Fluxes. Available online: https://www.aluminium-brazing.com/wp-content/uploads/2014/07/Brazing-of-Aluminium-Alloys-with-Higher-Mg-Content.pdf
  9. Gao, Z., Qin, Z., Lu, Q. (2022). Controlled atmosphere brazing of 3003 aluminum alloy using low-melting-point filler metal fabricated by melt-spinning technology. Materials, Vol. 15(17), 6080. https://doi.org/10.3390/ma15176080
  10. Sabadash, O. M., Maksymova, S. V. (2020). Formation and structure of the Al-Si layer on the contact surface of aluminum-reactive flux of the system KF-AlF3-K2SiF6. Metallofizika i. Noveishie Tekhnologii, Vol. 42(8), pp. 1079–1092. https://doi.org/10.15407/mfint.42.08.1079
  11. Benoit, M. J., Han, K. B., Winkler, S., Worswick, M. J., Wells, M. A. (2019). An assessment of the brazing performance of warm formed automotive heat exchangers. The International Journal of Advanced Manufacturing Technology, Vol. 103, pp. 1935–1946. https://doi.org/10.1007/s00170-019-03693-3
  12. Hawksworth, D. K. (2013). Advances in Brazing. Vol. 19: Fluxless Brazing of Aluminium. Woodhead Publishing Ltd., Oxford, UK, pp. 566–585.
  13. Zhao, H. (2013). Advances in Brazing. Vol. 10: Controlled Atmosphere Brazing of Aluminium.Woodhead Publishing Limited. Oxford, UK, pp. 280–322.
  14. Sabadash, O. M., Maksymova, S. V. (2022). Reactive flux brazing of aluminium to titanium. The Paton Welding J., Vol. 8, рр. 32–38. https://doi.org/10.37434/tpwj2022.08.05
  15. Burleigh, T. D., Bovard, F. S., Rennick, R. C. (1993). Corrosion potential for aluminium alloys measured by ASTM. Corrosion, Vol. 49, pp. 683–685.
  16. Ashburn, L. L. (1994). Fluxless vacuum furnace brazing of aluminum particularly advantageous for more critical applications. II. Industrial Heating, Vol. 61(4), pp. 43–46.
  17. Shen, Y., Li, Y., Li, X., Hou, S., Pei, Y., Zhong, S., Long, W. (2023). Fabrication of aluminum alloy honeycomb panels by vacuum brazing and heat treatment strengthening technology. Welding in the World, Vol. 67(2), pp. 447–454. https://doi.org/10.1007/s40194-022-01361-x
  18. Turriff, D. M., Corbin, S. F., Kozdras, M. (2010). Diffusional solidification phenomena in clad aluminum automotive braze sheet. Acta Mater., Vol. 58(4), pp. 1332–1341. https://doi.org/10.1016/j.actamat.2009.10.037
  19. Atabaki, M. M., Idris, J. (2012). Low-temperature partial transient liquid phase diffusion bonding of Al/Mg2Si metal matrix composite to AZ91D using Al-based interlayer. Mater Des., Vol. 34, pp. 832–841. https://doi.org/10.1016/j.matdes.2011.07.021
  20. Chen, Y., Liu, Q., Xia, P., Lin, T., Zhang, C., Zhou, N., Huang, Y. (2023). Effect of brazing temperature on microstructure, tensile strength, and oxide film-breaking synergy of 5A06 aluminum alloy welded by TG-TLP. Metals, Vol. 13(6), 1048. https://doi.org/10.3390/met13061048
  21. Massalski, T. B. (1990). Binary Alloy Phase Diagrams. ASM International, Materials Park, OH, USA.
  22. Xu, H., Liu, C., Silberschmidt, V. V., Pramana, S. S., White, T. J., Chen, Z., Wang, M., Accof, V. (2011). Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds. Acta Mater., Vol. 59(14), 5661–5673. https://doi.org/10.1016/j.actamat.2011.05.041
  23. Chang, S. Y., Tsao, L. C., Li, T. Y., Chuang, T. H. (2009). Joining 6061 aluminum alloy with Al-Si-Cu filler metal. J. Alloys Compd., Vol. 488(1), pp. 174–180. https://doi.org/10.1016/j.jallcom.2009.08.056
  24. Wei, Y. N., Sun, F., Tan, S. Y., Liang, S. H. (2018). Study on microstructure and performance of transient liquid phase bonding of Cu/Al with Al-based interlayers. Vacuum, Vol. 154, pp. 18–24. https://doi.org/10.1016/j.vacuum.2018.04.036
  25. Wang, X., Chen, X., Yuan, X. (2022). Influence of filler alloy on microstructure and properties of induction brazed Al/Cu joints. Materials Research, Vol. 25, e2021-0610. https://doi.org/10.1590/1980-5373-MR-2021-0610
  26. Anderson, W. A. (1977). Metallurgical studies of the vacuum brazing of aluminum. Welding Journal, Vol. 10, pp. 314–318.
  27. Lumley, R. N., Sercombe, T. B., Schaffer, G. M. (1999). Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans, A Phys Metall Mater Sci., Vol.30(2), рр. 457–63. https://doi.org/10.1007/s11661-999-0335-y
  28. Xie, G., Ohashi, O, Sato, T., Yamaguchi, N., Song, M. H., Mitsuishi, K., Furuya, K. (2004). Effect of Mg on the sintering of Al-Mg alloy powders by pulse electric-current sintering process. Mater Trans., Vol. 45(3), pp. 904–913. https://doi.org/10.2320/matertrans.45.904
  29. Effenberg, G., Ilyenko, S. (2005). Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT® Noble Metal Systems. Selected Systems from Ag-Al-Zn to Rh-Ru-Sc. Springer, Berlin–Heidelberg, Germany.
  30. Kalinina, N. E., Bondarenko, O. V. (2011). The use of aluminum alloys in aviation rocket and space technology. Oles Honchar Dnipro National University, Dnipro, Ukraine.
  31. Lysenko, O., Yakunin, A., Silka, L., Kalinina, T. (2010). Structure and properties of aluminium alloys with transition metals obtained by extrusion of fast-quenched foils. Visnyk Lviv Univ., Ser. Physics, Vol. 45, рр. 281–289.
  32. Maksymova, S. V., Khorunov, V. F. (2015). Diffusion processes and formation of structure of brazed joints on titanium aluminides. Journal of Applied Physical Science International, Vol. 2(1). pp. 24–29.

Full Text

© 2023 by the author(s).

This work is licensed under Creative Commons Attribution-Noncommercial 4.0 International License



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU