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Abstract. This paper focuses on studying the rheological properties of polydimethylsiloxane (PDMS). This 

polymer has been used to fabricate membranes and filters in engineering. The analysis of the rheological properties of 

this polymer is required for a further investigation of its mechanical behavior. In this study, the rheological behavior 

of PDMS is reported at different temperatures. This polymer showed steady shear viscosity during a short duration. 

However, this behavior changed with time and increased more with increasing temperature. The impact of the 

temperature increase was also observed when the shear viscosity of PDMS increased with shear strain. The increase 

of torque with shear strain and time was observed at different temperatures. Shear stress increased linearly with the 

shear rate at 20 °C and 40 °C. As expected, the deformation of the polymer required less shear stress with the 

increase of temperature. However, the change of shear stress with the shear rate at 60 °C was not linear, and the slope 

of the curve increased more at high shear rates. The results of this investigation can provide the required information 

for a better fabrication of membranes and filters with this polymer. 
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1 Introduction 

Polydimethylsiloxane (PDMS) is a “silicone rubber” 

polymer. Different steps such as hydrolysis and anionic, 

cationic, and radiation polymerization are used to 

synthesize this polymer [1, 2]. PDMS is transparent and 

resistant to thermal change, oxidation, and UV radiation 

[3–6]. It is worth noting that silicones do not produce any 

toxic material apart from a small amount of smoke during 

their combustion [3, 7]. Moreover, the thermal 

decomposition temperatures of PDMS are different 

because of significant differences in siloxane bond 

strength and segment flexibility in the main polymer 

chain, which also affect their toughening when used to 

prepare composites [3, 8]. The good elasticity of the 

siloxane chain can affect the hydrophobic properties of 

silicones and their low-temperature resistance. However, 

it can reduce the stability of these polymers at higher 

temperatures [9]. 

Different reaction mechanisms involve thermal 

depolymerization: random chain cleavage, attack of the 

PDMS chain end groups, and external reactions [10]. The 

type of functional groups and their positions on the chain 

and the molecular weight of PDMS affect the process of 

thermal depolymerization of the polymer [11]. It was 

shown that replacing end hydroxyl groups with methyl 

groups could increase the thermal resistance. Cyclic 

siloxane oligomers were produced in this process [12]. 

Besides, vinyl end groups could change the polymer’s 

thermal degradation mechanism [13]. 

Silicone-based materials contain different substances, 

such as crosslinking systems, rheology modifiers, and 

adhesion promoters. [14–19]. The silicone-based 

framework can also be used to design nanoporous 

materials [20]. The surface hydrophilization of PDMS 

can be produced when plasma oxidation or UV radiation 

is applied. This can improve cell adhesion, help assemble 

microdevices, and improve samples’ wetting with 

physiological fluids [21, 22]. 

A study showed that the chemical treatment of PDMS 

can affect the rheological behavior of the nanocomposites 

prepared with it [23]. Another study revealed that the 

variations of the properties of the pressure-sensitive 

adhesives changed with the type and loading of filler 

concerning their rheological properties [24]. Another 

parameter that influences the nanocomposite thermal 

conductivity is the critical filler fraction, affecting the 

liquid-solid transition and interface conductance [25]. 
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2 Research Methodology 

The improvement of the mechanical behavior of 

PDMS depends on a better understanding of its 

rheological properties, which can lead to an appropriate 

investigation of these nanocomposites. 

In this study, the rheological properties of PDMS at 

different temperatures are reported. This investigation 

allows a better understanding of the mechanical behavior 

of this polymer. This is the first investigation of this 

polymer reported with the analysis of rheological 

parameters at different temperatures to the author’s 

knowledge. 

PDMS (#423785) was purchased from Sigma Aldrich. 

The purchased polymer was in solution, and it was used 

in the rheological assessments without adding no other 

chemical. 

The rheological properties of PDMS were determined 

with an Anton Paar MCR-302 rheometer [26–29]. The 

circular rheological measurements were performed in 

triplicate at 20 °C, 40 °C, and 60 °C [30]. 

The data analysis was performed with QtiPlot, a 

software that calculates mean values and standard 

deviations [31–34]. The statistical significance of the data 

was determined for all the graphs. 

3 Results and Discussion 

Figure 1 shows the viscosity of PDMS vs. the shear 

rate at different temperatures. 

 

Figure 1 – Viscosity of PDMS vs. shear rate 

As shown in Figure 1, the viscosity of PDMS 

increased with the increase of shear rate with a slight 

change. It was observed that the increase of viscosity was 

more at 60 °C at high shear rates, and the increase of 

viscosity with the shear rate was less at lower 

temperatures.  

Figure 2 shows the change of viscosity of PDMS vs. 

shear strain at different temperatures. 

 

Figure 2 – Viscosity of PDMS vs. shear strain 

As seen in this figure, the viscosity of PDMS increased 

with shear strain at all temperatures. The shear-thickening 

behavior of this polymer was more at 60 °C than in lower 

temperatures. The viscosity of the polymer became 

constant and reached a plateau at lower shear strain 

values. As the variation of viscosity with shear rate, in 

this case, also the shear thickening was stronger at 60 °C 

at high shear strain values. Although the variation of 

viscosity vs. shear strain of PDMS was almost linear at 

20 °C at high shear strain values, it showed a slight 

increase at 40 °C. These results were attributed to the 

effect of temperature on the mobility of the polymer 

chains that led to its deformation.  

The viscosity of PDMS vs. time curves at different 

temperatures is displayed in Figure 3. As shown in this 

figure, the changes in the viscosity of the polymer with 

time were similar to its changes with shear rate and shear 

strain, as shown in Figures 1, 2. 

 

Figure 3 – Viscosity of PDMS vs. time 

The viscosity values of PDMS vs. time at different 

temperatures are presented in Table 1. As observed in this 

table at 20 °C, the increased value of 0.28 mPa·s in 

viscosity was observed for PDMS between 600 s and 

200 s. This increase was 0.23 mPa·s between 1000 s and 

600 s. At 40 °C, this increase was 0.22 mPa·s between 

600 s and 200 s and 0.35 mPa·s between 1000 s and 

600 s, respectively, whereas it was 0.21 mPa·s in the first 

period and 0.68 mPa·s in the 2nd period, respectively. 

Therefore, the consistency between the results of this 

table and those of Figure 3 was observed. 
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Table 1 – Viscosity values of PDMS vs. time 

Polymer/viscosity,  

mPa·s 

Time (s) 

200 600 1000 

20 °C 3.81 ± 0.03 4.09 ± 0.01 4.32 ± 0.01 

40 °C 2.90 ± 0.03 3.12 ± 0.01 3.47 ± 0.01 

60 °C 2.26 ± 0.06 2.47 ± 0.01 3.15 ± 0.01 
 

Figure 4 shows the torque vs. shear strain of PDMS at 

different temperatures. The torque values increased with 

shear strain at 20 °C, 40 °C, and 60 °C. However, an 

increase in the curve slope was observed at high shear 

strains at 60 °C. Moreover, as expected, the application of 

less amount of torque was required when the temperature 

increased. 

 

Figure 4 – Torque vs. shear strain of PDMS 

The changes in the torque values for PDMS vs. time at 

different temperatures are displayed in Figure 5. 

 

Figure 5 – Torque vs. time for PDMS 

As shown in Figure 5, the torque values increased 

linearly with time at 20 °C and almost linearly at 40 °C, 

but the slope of the curve increased at 60 °C. 

Figure 6 shows the shear stress vs. shear rate curves of 

PDMS at different temperatures. As observed in this 

figure, a linear increase and almost a linear increase of 

shear stress with the increase of shear rate were observed 

at 20 °C and 40 °C. However, this change was not linear 

at 60 °C. 

Figure 7 shows the shear stress vs. shear strain curves 

of PDMS at different temperatures. The same shear stress 

changes were observed in Figure 7 as in the torque in 

Figure 4. 

 

Figure 6 – Shear stress of PDMS vs. shear rate 

 

Figure 7 – Shear stress of PDMS vs. shear strain 

Table 2 represents the shear stress values of PDMS vs. 

shear strain at different temperatures. As expected, the 

shear strain increase of the polymer from 1·106 to 2·107 

would require more increase in the shear stress at 20 °C 

than 40 °C or 60 °C. However, closer shear stress values 

were required when the shear strain increased from 2·107 

to 4·107. 

Table 2 – Shear stress values of PVA and PEG vs. shear strain 

Polymer/ 

shear  

stress, Pa 

Shear strain, % 

1·106 2·107 4·107 

20 °C 0.52 ± 0.01 2.70 ± 0.01 4.00 ± 0.01 

40 °C 0.39 ± 0.02 2.05 ± 0.02 3.11 ± 0.01 

60 °C 0.31 ± 0.01 1.63 ± 0.02 2.80 ± 0.01 
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4 Discussion 

The pace of applications of PDMS in the preparation 

of the membranes and filters is expected to accelerate as 

this polymer has shown appropriate properties in new 

rubbers [35–42]. Various materials have been 

investigated with previous applications in materials 

science, pure sciences, and engineering [43–51]. 

These materials could modify the properties of PDMS 

in the mentioned applications. This could be directed 

toward the exploration of its novel applications.  

Recently the properties of some polymers have been 

investigated that can be used to prepare blends with 

PDMS [52–60]. It is worth noting that adding some 

nanomaterials without or with other polymers to PDMS 

can prepare diverse nanocomposites with interesting 

properties [61–68]. 

Carbon nanotubes, polyamide with metal-organic 

framework nanoparticles, poly (vinylidene fluoride), and 

poly (ether ketone) have been used for the preparation of 

new membranes [69–74]. 

More investigations on these materials, including 

PDMS, can improve the quality of new membranes and 

filters [75–77]. 

5 Conclusions 

This investigation reported the rheological properties 

of PDMS at different temperatures. The polymer showed 

viscosity stability at 20 °C and 40 °C vs. shear rate. 

However, at 60 °C more significant viscosity increase 

was observed at high shear rates. Moreover, the viscosity 

of PDMS increased at all temperatures with shear strain, 

which revealed its shear thickening behavior. The 

changes in the viscosity of the polymer were like its 

changes with shear rate and shear strain vs. time. The 

increase of torque with shear strain and time and shear 

stress with shear rate and time were observed in this 

investigation. However, the patterns of the change of 

these parameters were different at 60 °C in comparison 

with lower temperatures. This study can better prepare 

membranes and filters with this polymer regarding its 

rheological properties. 
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