Advancement of Fault Diagnosis and Detection Process in Industrial Machine Environment | Journal of Engineering Sciences

Advancement of Fault Diagnosis and Detection Process in Industrial Machine Environment

Author(s): Altaf S.1, Mehmood M. S.2, Soomro M. W.3

Affiliation(s): 
1 Auckland University of Technology, 55 Wellesley St., 1010 Auckland, New Zealand; 
2 Sajid Brothers Engineering Industries (Pvt.) Ltd, 52250 Punjab, Gujranwala, Pakistan;
3 Manukau Institute of Technology, Newbury St., 2023 Aukland, New Zealand

*Corresponding Author’s Address: saud.altaf@aut.ac.nz

Issue: Volume 6; Issue 2 (2019)

Dates:
Paper received: July 5, 2019
The final version of the paper received: September 15, 2019
Paper accepted online: September 20, 2019

Citation:
Altaf, S., Mehmood, M. S., Soomro, M. W. (2019). Advancement of fault diagnosis and detection process in the industrial machine environment. Journal of Engineering Sciences, Vol. 6(2), pp. D1-D8, doi: 10.21272/jes.2019.6(2).d1.

DOI: 10.21272/jes.2019.6(2).d1

Research Area:  MECHANICAL ENGINEERING: Dynamics and Strength of Machines

Abstract. Machine fault diagnosis is a very important topic in industrial systems and deserves further consideration in view of the growing complexity and performance requirements of modern machinery. Currently, manufacturing companies and researchers are making a great attempt to implement efficient fault diagnosis tools. The signal processing is a key step for the machine condition monitoring in complex industrial rotating electrical machines. A number of signal processing techniques have been reported from last two decades conventionally and effectively applied on different rotating machines. Induction motor is the one of widely used in various industrial applications due to small size, low cost and operation with existing power supply. Faults and failure of the induction machine in industry can be the cause of loss of throughput and significant financial losses. As compared with the other faults with the broken rotor bar, it has significant importance because of severity which leads to a serious breakdown of motor. Detection of rotor failure has become significant fault but difficult task in machine fault diagnosis. The aim of this paper is indented to summarizes the fault diagnosis techniques with the purpose of the broken rotor bar fault detection.

Keywords: machine fault diagnosis, signal processing technique, induction motor, condition monitoring.

References:

  1. Bonnett, A. H., Soukup, G. C. (2013). Analysis of rotor failures in squirrel cage induction motors. IEEE Transactions on Industry Applications, Vol. 24(6), pp. 1124–1130.
  2. O’Donnell, P. (2005). Report of large motor reliability survey of industrial and commercial installations. Part 1. IEEE Transactions on Industry Applications, Vol. IA-21(4).
  3. O’Donnell, P. (2005). Report of large motor reliability survey of industrial and commercial installations. Part 2. IEEE Transactions on Industry Applications, Vol. IA-21(4).
  4. O’Donnell, P. (2017). Report of large motor reliability survey of industrial and commercial installations. Part 3. IEEE Transactions on Industry Applications, Vol. IA-23(4), pp. 153–158.
  5. Vas, P. (1999). Parameter Estimation, Condition Monitoring, and Diagnosis for Electrical Machines. Clarendon, Oxford, UK.
  6. Seinsch, H. O. (2001). Monitoring und diagnose elektrischer maschinen und antriebe. ETG-Workshop Monitoring und Diagnose Elektrischer Maschinen und Antriebe, VDE-Haus, Frankfurt am Main.
  7. Albrecht, P. F., Appiarius, J. C., McCoy, R. M., Owen, E. L., Sharma, D. K. (2012). Assessment of the reliability of motors in utility applications. IEEE Trans. Energy Convers., Vol. EC-1(1), pp. 39–46.
  8. Albrecht, P. F., Appiarius, J. C., Sharma, D. K. (2009). Assessment of the reliability of motors in utility applications. IEEE Transactions on Energy Conversion, Vol. 1, pp. 39–46.
  9. Bonnett, A. H. (2010). Root cause failure analysis for ac induction motors in the petroleum and chemical industry. Proceedings of the 57th Annual Petroleum and Chemical Industry Conference.
  10. Benbouzid, M. E. H. (2016). A review of induction motors signature analysis as a medium for faults detection. IEEE Trans. on Industrial Electronics, Vol. 47(5), pp. 984–993.
  11. Bellini, A., Filippetti., F., Franceschini, G., Tassoni, C., Kliman, G. B. (2011). Quantitative evaluation of induction motor broken bars by means of electrical signature analysis. IEEE Trans. on Ind. Appl., Vol. 37(5), pp. 1248–1255.
  12. Thomson, W. T. (2011). On-line fault diagnosis in induction motor drives via MCSA. EM diagnostics Ltd. Proceedings of the 37th Turbo-Machinery Symposium, Scotland.
  13. Matic, D., Kulic, F., Climente-Alarcon, V., Puche-Panadero, R. (2012). Artificial neural networks broken rotor bars induction motor fault detection. 10th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), pp. 49–53.
  14. Induction Motors. Retrieved from: http://electriciantraining.tpub.com/14177/css/14177_94.htm.
  15. Nandi, S., Toliyat, H. A., Li, X. (2015). Condition monitoring and fault diagnosis of electrical motors – a review. IEEE Transactions on Energy Conversion, Vol. 20, pp. 719–29.
  16. Bonnett, A. K., Soukup, G. C. (1999). Cause and analysis of stator and rotor failures in 3-phase squirrel cage induction motors. Pulp and Paper Industry Technical Conference, pp. 22–42.
  17. Nandi S., Bharadwaj, R., Toliyat, H. A., Parlos, A. G. (2009). Study of three phase induction motors with incipient rotor cage faults under different supply conditions. IEEE-IAS Annual Meeting, Vol. 3, pp. 1922–1937.
  18. Ben Sasi, A. Y., Gu, F., Li, Y., Ball, A. D. (2016). A validated model for the prediction of rotor bar failure in squirrel-cage motors using instantaneous angular speed. Mechanical Systems and Signal Processing, Vol. 20(7), pp. 1572–1589.
  19. Dorrell, D. G., Chindurza, I., Cossar, C. (2015). Effects of rotor eccentricity on torque in switched reluctance Machines. IEEE Transactions on Magnetics, Vol. 41(10), pp. 3961–3963.
  20. Rezig, A., Mekideche, M. R., Djerdir, A. (2017). Effect of rotor eccentricity faults on noise generation in permanent magnet synchronous motors. Progress in Electromagnetics Research C, Vol. 15, pp. 117–132.
  21. Gereis, G. F., Wang, C., Lai, J. C. (2006). Noise in Polyphase Electric Motors, Taylor & Francis, USA.
  22. Gereis, G. F., Wang, C., Lai, J. C., Ertugrul, N. (2017). Analytical prediction of noise of magnetic origin produced by permanent magnet brushless motors. Electrical Machines and Drives Conference IEMDC, Antalya, Turkey.
  23. Wang, S., Aydin, M., Lipo, T. A. (2015). Electromagnetic vibration and noise assessment for surface mounted PM machines. IEEE Power Engineering Society Summer Meeting, Vancouver, Canada.
  24. Didier, G., Ternisien, E., Caspary, O., Razik, H. (2017). A new approach to detect broken rotor bars in induction machines by current spectrum analysis. Mechanical Systems and Signal Processing, Vol. 21, pp. 1127–1142.
  25. Ahmed, I., Ahmed, M. (2018). Comparison of stator current, axial flux and instantaneous power used to detect the broken rotor bar fault in machines. Australian University Power Engineering Conference, Sydney, Australia.
  26. Vas, P. (1993). Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines. Clarendon, Oxford, UK.
  27. Heller, B, Hamata, V. (1977). Harmonic Field Effects in Induction Machine. Elsevier, New York.
  28. Cameron, J. R., Thomson, W. T., Dow, A. B. (2016). Vibration and current monitoring for detecting airgap eccentricity in large induction motors. Inst. Elect. Eng. B, Vol. 133(3), pp. 155–163.
  29. Basak, D., Tiwari, A., Das, S. P. (2016). Fault diagnosis and condition monitoring of electrical machines – A review. IEEE International Conference on Industrial Technology (ICIT 2006), pp. 3061–3066.
  30. Gandhi, A., Corrigan, T., Parsa, L. (2017). Recent advances in modeling and online detection of stator interturn faults in electrical motors. IEEE Transactions on Industrial Electronics, Vol.58(5), pp. 1564–1575.
  31. Da, Y., Shi, X., Krishnamurthy, M. (2014). Health monitoring, fault diagnosis and failure prognosis techniques for Brushless Permanent Magnet Machines. IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–7.
  32. Bellini, A., Immovilli, F., Rubini, R., Tassoni, C. (2008). Diagnosis of bearing faults of induction machines by vibration or current signals: a critical comparison. Industry Applications Society Annual Meeting, pp. 1–8.
  33. Verucchi, C. J., Acosta, G. G. (2007). Fault detection and diagnosis techniques in induction electrical machines. Latin America Transactions, Vol. 5(1), pp. 41–49.
  34. Pandian, A., Ali, A. (2009). A review of recent trends in machine diagnosis and prognosis algorithms. World Congress on Nature & Biologically Inspired Computing, pp. 1731–1736.
  35. Behbahanifard, H., Karshenas, H., Sadoughi, A. (2008). Non-invasive on-line detection of winding faults in induction motors – A review. International Conference on Condition Monitoring and Diagnosis, pp. 188–191.
  36. Ciandrini, C., Gallieri, M., Giantomassi, A., Ippoliti, G., Longhi, S. (2010). Fault detection and prognosis methods for a monitoring system of rotating electrical machines. IEEE International Symposium on Industrial Electronics (ISIE), pp. 2085–2090.
  37. Hajiaghajani, M., Madani, S. M. (2005). A new method for analysis of rotor broken bar fault in induction machines. IEEE International Conference on Electric Machines and Drives, pp. 1669–1674.
  38. Tavner, P. J. (2008). Review of condition monitoring of rotating electrical machines. Electric Power Applications, Vol. 2(4), pp. 215–247.
  39. Zhang, P., Du, Y., Habetler, T. G., Lu, B. (2009). A survey of condition monitoring and protection methods for medium voltage induction motors. Energy Conversion Congress and Exposition, pp. 3165–3174.
  40. Jayaswal, P., Wadhwani, A. K., Mulchandani, K. B. (2008). Machine fault signature analysis. International Journal of Rotating Machinery, Vol. 2008, art. no. 583982.
  41. Jung, J.-H., Lee, J.-J., Kwon, B.-H. (2006). Online diagnosis of induction motors using MCSA. IEEE Transactions on Industrial Electronics, Vol. 53(6), pp. 1842–1852.
  42. Bellini, A., Filippetti, F., Franceschini, G., Tassoni, C., Kliman, G. (2001). Quantitative evaluation of induction motor broken bars by means of electrical signature analysis. IEEE Transactions on Industry Applications, Vol. 37, pp. 1248–1255.
  43. Benbouzid, M. (1998). A review of induction motors signature analysis as a medium for faults detection. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Vol. 4, pp. 1950–1955.
  44. Sadoughi, A., Ebrahimi, M., Razaei, E. (2006). A new approach for induction motor broken bar diagnosis by using vibration spectrum. International Joint Conference SICE-ICASE, pp. 4715–4720.
  45. Cheng, S., Du, Y., Restrepo, J. A., Zhang, P., Habetler, T. G. (2012). A nonintrusive thermal monitoring method for induction motors fed by closed-loop inverter drives. IEEE Transactions on Power Electronics, Vol. 27(9), pp. 4122–4131.
  46. Hafezi, H., Jalilian, A. (2006). Design and construction of induction motor thermal monitoring system. Proceedings of the 41st Universities Power Engineering Conference, Vol. 2, pp. 674–678.
  47. Vico, J., Voloh, I., Stankovic, D., Zhang, Z. (2010). Enhanced algorithm for motor rotor broken bar detection. Conference Record of 2010 Pulp and Paper Industry Technical Conference (PPIC), pp. 1–8.
  48. Antonino-Daviu, J., Aviyente, S., Strangas, E., Riera-Guasp, M. (2011). A scale invariant algorithm for the automatic diagnosis of rotor bar failures in induction motors. IEEE International Symposium on Industrial Electronics (ISIE), pp. 496–501.
  49. Lima-Filho, A. C., Gomes, R. D., Adissi, M. O., da Silva, T. A. B, Belo, F. A., Spohn, M. A. (2012). Embedded system integrated into a wireless sensor network for online dynamic torque and efficiency monitoring in induction motors. IEEE/ASME Transactions on Mechatronics, Vol. 17(3), pp. 404–414.
  50. Toscani, S., Faifer, M., Rossi, M., Cristaldi, L., Lazzaroni, M. (2012). Effects of the speed loop on the diagnosis of rotor faults in induction machines. IEEE Transactions on Instrumentation and Measurement, Vol. 61(10), pp. 2713–2722.
  51. Chudasama, K. J., Shah, V. (2012). Induction motor non-invasive fault diagnostic techniques: A review. International Journal of Engineering Research and Technology, Vol. 1(5).
  52. Aroui, T., Koubaa, Y., Toumi, A. (2018). Magnetic coupled circuit modelling of induction machines oriented to diagnostics. Leonardo Journal of Sciences, Vol. 13, pp. 103–121.
  53. Mehala, N., Dahiya, R. (2018). Motor Current Signature Analysis and its Applications in Induction Motor Fault Diagnosis. International Journal of Systems Applications, Engineering and Development, Vol. 2(1), pp. 29–35.
  54. Mehala, N., Dahiya, R. (2008). Motor current signature analysis and its applications in induction motor fault diagnosis. International Conference on Signal Processing, Robotics and Automation (ISPRA-08), pp. 442–448.
  55. Thomson, W. T., Gilmore, R. J. (2013). Motor current signature analysis to detect faults in induction motor drives – Fundamentals. Proceedings of the 32nd Turbomachinery Symposium on Data Interpretation and Industrial Case Histories, Texas, A&M University, USA.
  56. Schoen, R. R., Lin, B. K., Habetler, T. G., Schlag, J. H., Farag, S. (2015). An unsupervised, on-line system for induction motor fault detection using stator current monitoring. IEEE Transactions on Industry Applications, Vol. 31(6), pp. 1280–1286.
  57. Benbouzid, M. E. H., Nejjari, H., Beguenane, R., Vieira, M. (2019). Induction motor asymmetrical faults detection using advanced signal processing techniques. IEEE Transactions on Energy Conversion, Vol. 14(2), pp. 147–152.
  58. Benbouzid, M. E. H. (2000). A review of induction motors signature analysis as a medium for faults detection. IEEE Transactions on Industrial Electronics, Vol. 47(5), pp. 984–993.
  59. Moin, S. K., Giri, V. K. (2012). Broken rotor bar fault detection in induction motors using wavelet transform. International Conference on Computing, Electronics and Electrical Technologies (ICCEET), pp. 1–6.
  60. Ayhan, B., Chow, M.-Y., Song, M.-H. (2006). Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors. IEEE Transactions on Industrial Electronics, Vol. 53(4), pp. 1298–1308.
  61. Ahmed, I., Ahmed, M. (2018). Comparison of stator current, axial leakage flux and instantaneous power to detect broken rotor bar faults in induction machines. Power Engineering Conference, Australasian Universities, pp. 1–6.
  62. Ayhan, B., Chow, M.-Y., Song, M.-H. (2015). Multiple signature processing-based fault detection schemes for broken rotor bar in induction motors. IEEE Transactions on Energy Conversion, Vol. 20(2), pp. 336–343.
  63. Supangat, R., Ertugrul, N., Soong, W. L., Gray, D. A., Hansen, C., Grieger, J. (2010). Broken rotor bar fault detection in induction motors using starting current analysis. European Conference on Power Electronics and Applications, pp. 1–10.

Full Text



© 2014-2019 Sumy State University.
Scientific journal "Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.