Boron-Carbon Coatings: Structure, Morphology and Mechanical Properties | Journal of Engineering Sciences

Boron-Carbon Coatings: Structure, Morphology and Mechanical Properties

Author(s): Kulesh Е. А.1, 2, Piliptsou D. G.1, 2*, Rogachev A. V.1, 2, Hong J. X.1, Fedosenko N. N.1, 2, Kolesnyk V.3

1 International Chinese-Belarusian Scientific Laboratory by Vacuum-Plasma Technologies, Nanjing University of Science and Technology, 200, Xiaolingwei St., 210094, Nanjing, China;
2 Francisk Skorina Gomel State University, 104, Sovetskaya Street, 246019, Gomel, Belarus;
3 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine.

*Corresponding Author’s Address: [email protected]

Issue: Volume 7, Issue 2 (2020)

Paper received: June 14, 2020
The final version of the paper received: September 28, 2020
Paper accepted online: October 2, 2020

Kulesh Е. А., Piliptsou D. G., Rogachev A. V., Hong J. X., Fedosenko N. N., Kolesnyk V. (2020). Boron-carbon coatings: structure, morphology and mechanical properties. Journal of Engineering Sciences, Vol. 7(2), pp. C1–C9, doi: 10.21272/jes.2020.7(2).c1

DOI: 10.21272/jes.2020.7(2).c1

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. Boron-doped carbon coatings have been produced by a method combining the deposition of a pulsed carbon plasma coating and a boron flow formed as a result of the evaporation of a boron target by pulsed YAG: Nd3+ laser irradiation. Phase, chemical composition, structure, and mechanical properties of composite boron-carbon coatings have been determined. Changes in the coatings’ roughness depending on the boron concentration have been established using atomic force microscopy. It has been shown that the grain size is on the rise with increasing boron concentration. Raman spectroscopy has revealed that at a boron concentration of 43.2 at. %. There is a sharp increase in the ID/IG ratio, which indicates the carbon component’s graphitization. Low ID/IG ratios are observed in the coating at low boron concentrations (no more than 17.4 at. %), suggesting a high content of carbon atoms with sp3 bond hybridization. The coating studies, carried out by X-ray photoelectron microscopy, showed that boron could be in a free state or in the form of carbide or oxide depending on the concentration in the coating. In this case, with an increase in boron concentration, there is a decrease in the concentration of carbon atoms in the state with sp3 bond hybridization, accompanied by an increase in the number of B-C bonds and a reduction in the boron concentration not associated with carbon and oxygen. These coating and chemical composition features determine the boron concentration’s established non-monotonic nature on their microhardness, elastic and mechanical properties.

Keywords: composite carbon coatings, boron-doped, atomic force microscopy, X-ray photoelectron microscopy, Raman spectroscopy, microhardness, scratch.


  1. Nakazawa, H., Sudoh, A., Suemitsu, M., Yasui, K., Itoh, T., Endoh, T., Narita Y. Mashita, M. (2010). Mechanical and tribological properties of boron, nitrogen-coincorporated diamond-like carbon films prepared by reactive radio-frequency magnetron sputtering. Diamond and Related Materials, Vol. 19(5), pp. 503–506, doi:10.1016/j.diamond.2010.01.026.
  2. He, D., Shang, L., Lu, Z., Zhang, G., Wang, L., Xue, Q. (2017). Tailoring the mechanical and tribological properties of B4C/a-C coatings by controlling the boron carbide content. Surface and Coatings Technology, Vol. 329, pp. 11–18, doi:10.1016/j.surfcoat.2017.09.017.
  3. Donnet, C. (1998). Recent progress on the technology of doped diamond-like and carbon alloy coatings. Surface and Coatings Technology, Vol. 100, pp.180–186,
  4. Cuong, P. D., Ahn, H.-S., Yoon, E.-S., Shin, K.-H. (2006). Effects of relative humidity on tribological properties of boron carbide coating against steel. Surface and Coatings Technology, Vol. 201(7), pp. 4230–4235, doi:10.1016/j.surfcoat.2006.08.093.
  5. Wentorf, R.H. (1961). Synthesis of the Cubic Form of Boron Nitride. The Journal of Chemical Physics, Vol. 34, pp. 809,
  6. Solozhenko, V. L., Andrault, D., Fiquet, G., Mezouar, M., Rubie, D. C. (2001). Synthesis of superhard cubic BC2N. Applied Physics Letters, Vol. 78(10), pp. 1385–1387, doi:10.1063/1.1337623.
  7. Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragan, F., Alvarez, S. (2008). Covalent radii revisited. Dalton Transactions, Vol. 21, pp. 2832–2838, doi:10.1039/b801115j.
  8. Ito, H., Hori, K., Saitoh, H. (2006). Deposition of mechanically hard amorphous carbon nitride films from decomposition of BrCN. Effects of substrate cooling and pulsed rf-bias voltage. Journal of Non-Crystalline Solids, Vol. 352(1), pp.1–7,
  9. Kleinsorge, B., Ferrari, A. C., Robertson, J., Milne, W. I. (2000). Influence of nitrogen and temperature on the deposition of tetrahedrally bonded amorphous carbon. Journal of Applied Physics, Vol. 88(2), pp. 1149–1157, doi:10.1063/1.373790 1149.
  10. Mori, H., Tohyama, M., Okuyama, M., Ohmori, T., Ikeda, N., Hayashi, K. (2017). Low Friction Property of Boron Doped DLC under Engine Oil. Tribology Online, Vol. 12(3), pp. 135–140, doi:10.2474/trol.12.135.
  11. Sikora, A., Berkesse, A., Bourgeois, O., Garden, J.-L., Guerret-Piécourt, C., Rouzaud, J.-N., Loir, A.-S., Garrelie, F., Donnet, C. (2009). Structural and electrical characterization of boron-containing diamond-like carbon films deposited by femtosecond pulsed laser ablation. Solid State Sciences, Vol. 11(10), pp. 1738–1741, doi:10.1016/j.solidstatesciences.2008.07.013.
  12. Liza, S., Ohtake, N., Akasaka, H., Munoz-Guijosa, J. M. (2015). Tribological and thermal stability study of nanoporous amorphous boron carbide films prepared by pulsed plasma chemical vapor deposition. Science and Technology of Advanced Materials, Vol. 16(3), pp. 035007, doi:10.1088/1468-6996/16/3/035007.
  13. Liza, S., Hieda, J., Akasaka, H., Ohtake, N., Tsutsumi, Y., Nagai, A., Hanawa, T. (2017). Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility. Science and Technology of Advanced Materials, Vol. 18(1), pp. 76–87, doi:10.1080/14686996.2016.1262196 87.
  14. Ming, M. Y., Piliptsou, D. G., Rudenkov, A. S., Rogachev, A. V., Jiang, X., Dongping, S., Chaus, A. S., Balmakou, A. (2017). Structure, mechanical and tribological properties of Ti-doped amorphous carbon films simultaneously deposited by magnetron sputtering and pulse cathodic arc. Diamond and Related Materials, Vol. 77, pp. 1–9,
  15. Chaus, A. S., Jiang, X. H., Pokorný, P., Piliptsou, D. G., Rogachev, A. V. (2018.) Improving the mechanical property of amorphous carbon films by silicon doping. Diamond and Related Materials, Vol. 82, pp. 137–142,
  16. Wang, J., Ma, J., Huang, W., Wang, L., He, H., Liu, C. (2017). The investigation of the structures and tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys. Surface and Coatings Technology, Vol. 316, pp. 22–29,
  17. Piliptsov, D. G., Rogachev, A. A., Chizhik, S. A., Rudenkov, A. S., Kulesh, E. A., Fedosenko, N. N. (2018). Phase composition and structure of multilayer nanosized metalcarbon coatings. PFMT, Vol. 2(35), pp. 34–37.
  18. Zhou, B., Jiang, X., Rogachev, A. V., Sun, D., Zang, X. (2013). Growth and characteristics of diamond-like carbon films with titanium and titanium nitride functional layers by cathode arc plasma. Surface and Coatings Technology, 223, 17–23. doi:10.1016/j.surfcoat.2013.02.020.
  19. Rogachev, A. V., Rudenkov, A. S., Piliptsov, D. G., Jiang, X., Fedosenko, N. N. (2017). Phase Composition, Structure and Mechanical Properties of Carbon Coatings Doped by Carbide-Forming Metals. Recent Advances in Technology Research and Education, pp. 18–25. doi:10.1007/978-3-319-67459-9_3.
  20. Zhou, B., Liu, Z., Rogachev, A. V., Piliptsou, D. G., & Tang, B. (2016). Size effect in the titanium/diamond-like carbon bilayer films: effect of relative thickness on their structure and mechanical properties. Surface and Interface Analysis, Vol. 49(1), pp. 47–54, doi:10.1002/sia.6056.
  21. Zhou, Y., Li, L., Shao, W., Chen, Z., Wang, S., Xing, X., & Yang, Q. (2020). Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel: Exploration with Ti doping from micro to macro. Diamond and Related Materials, Vol. 107, pp. 107870, doi:10.1016/j.diamond.2020.107870.
  22. Charitidis, C.A. (2010). Nanomechanical and nanotribological properties of carbon-based thin films: a review, International Journal of Refractory Metals and Hard Materials, Vol. 28, pp. 51–70,
  23. Xu, F., Yuen, M. F., He, B., Wang, C. D., Zhao, X. R., Tang, X. L., Zuo, D. W., Zhang, W. J. (2014). Microstructure and tribological properties of cubic boron nitride films on Si3N4 inserts via boron-doped diamond buffer layers. Diamond and Related Materials, Vol. 49, pp. 9–13, doi:10.1016/j.diamond.2014.07.014.
  24. Ren, Z., Qin, H., Dong, Y., Doll, G. L., Ye, C. (2019). A boron-doped diamond like carbon coating with high hardness and low friction coefficient. Wear, Vol. 436, pp. 203031, doi:10.1016/j.wear.2019.203031.
  25. Zavaleyev, V., Walkowicz, J., Greczynski, G., Hultman, L. (2013). Effect of substrate temperature on properties of diamond-like films deposited by combined DC impulse vacuum-arc method. Surface and Coatings Technology, Vol. 236, pp. 444–449, doi:10.1016/j.surfcoat.2013.10.023.
  26. Menard, K. P., Menard, N. (2017). Dynamic Mechanical Analysis. Encyclopedia of Analytical Chemistry, pp. 1–25, doi:10.1002/9780470027318.a2007.pub3.
  27. Dwivedi, N., Kumar, S. (2012). Nanoindentation testing on copper/diamond-like carbon bi-layer films. Current Applied Physics, Vol. 12(1), pp. 247–253, doi:10.1016/j.cap.2011.06.013.
  28. Wang, P., Wang, X., Xu, T., Liu, W., Zhang, J. (2007). Comparing internal stress in diamond-like carbon films with different structure. Thin Solid Films, Vol. 515(17), pp. 6899–6903, doi:10.1016/j.tsf.2007.02.069.
  29. Zhang, S., Sun, D., Fu, Y., Du, H. (2005). Toughening of hard nanostructural thin films: a critical review. Surface and Coatings Technology, Vol. 198(1), pp. 2–8, doi:10.1016/j.surfcoat.2004.10.020.
  30. Robertson, J. (1991). Hard amorphous (diamond-like) carbons. Progress in Solid State Chemistry, Vol. 21, pp. 199–333,
  31. Cemin, F., Bim, L. T., Menezes, C. M., Maia da Costa, M. E. H., Baumvol, I. J. R., Alvarez, F., Figueroa, C. A. (2015). The influence of different silicon adhesion interlayers on the tribological behavior of DLC thin films deposited on steel by EC-PECVD. Surface and Coatings Technology, Vol. 283, pp. 115–121, doi:10.1016/j.surfcoat.2015.10.031.
  32. Barshilia, H. C., Ananth, A., Khan, J., Srinivas, G. (2012). Ar + H2 plasma etching for improved adhesion of PVD coatings on steel substrates. Vacuum, Vol. 86(8), pp. 1165–1173, doi:10.1016/j.vacuum.2011.10.028.
  33. Attar, F., Johannesson, T. (1996). Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique. Surface and Coatings Technology, Vol. 78(1-3), pp. 87–102, doi:10.1016/0257-8972(94)02396-4.
  34. Wang, A.-Y., Lee, K.-R., Ahn, J.-P., Han, J. H. (2006). Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique. Carbon, Vol. 44(9), pp. 1826–1832, doi:10.1016/j.carbon.2005.12.04.
  35. Gayathri, S., Kumar, N., Krishnan, R., Ravindran, T. R., Dash, S., Tyagi, A. K., Sridharan, M. (2015). Influence of Cr content on the micro-structural and tribological properties of PLD grown nanocomposite DLC-Cr thin films. Materials Chemistry and Physics, Vol. 167, pp. 194–200, doi:10.1016/j.matchemphys.2015.10.031.
  36. Zhang, L. L., Yang, Q., Tang, Y., Yang, L., Zhang, C., Hu, Y., Cui, X. (2015). Synthesis and characterization of boron incorporated diamond-like carbon thin films. Thin Solid Films, 589, 457–464. doi:10.1016/j.tsf.2015.05.067.
  37. Tan, M., Zhu, J., Han, J., Gao, W., Liu, A., Han, X. (2008). Raman characterization of boron doped tetrahedral amorphous carbon films. Materials Research Bulletin, Vol. 43(2), pp. 453–462, doi:10.1016/j.materresbull.2007.02.037.
  38. Dai, W., Ke, P., Wang, A. (2011). Microstructure and property evolution of Cr-DLC films with different Cr content deposited by a hybrid beam technique. Vacuum, Vol. 85(8), pp. 792–797, doi:10.1016/j.vacuum.2010.11.013.
  39. Fan, D., Lu, S., Guo, Y., Hu, X. (2018). Two-dimensional stoichiometric boron carbides with unexpected chemical bonding and promising electronic properties. Journal of Materials Chemistry C, Vol. 6(7), pp. 1651–1658, doi:10.1039/c7tc04505k.
  40. Jana, D., Sun, C.-L., Chen, L.-C., Chen, K.-H. (2013). Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Progress in Materials Science, Vol. 58(5), pp. 565–635, doi:10.1016/j.pmatsci.2013.01.003.
  41. Chhowalla, M., Yin, Y., Amaratunga, G. A. J., McKenzie, D. R., Frauenheim, T. (1996). Highly tetrahedral amorphous carbon films with low stress. Applied Physics Letters, Vol. 69(16), pp. 2344–2346, doi:10.1063/1.117519.
  42. Wang, X., Zhao, Y. (2015). Study of Electrical Conductivity and Microcosmic Structure of Tetrahedral Amorphous Carbon Films Doped by Boron. Advances in Materials Science and Engineering, Vol. 2015, pp. 1–6, doi:10.1155/2015/727285.
  43. Tamura, Y., Zhao, H., Wang, C., Morina, A., Neville, A. (2016). Interaction of DLC and B4C coatings with fully fated oils in boundary lubrication conditions. Tribology International, Vol. 93, pp. 666–680, doi:10.1016/j.triboint.2015.02.029.
  44. Zou, C. W., Wang, H. J., Feng, L., Xue, S. W. (2013). Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings. Applied Surface Science, Vol. 286, pp. 137–141, doi:10.1016/j.apsusc.2013.09.036.
  45. Choi, W. S., Heo, J., Chung, I., Hong, B. (2005). The effect of RF power on tribological properties of the diamond-like carbon films. Thin Solid Films, Vol. 475(1), pp. 287–290, doi:10.1016/j.tsf.2004.07.033.
  46. Leyland, A., Matthews, A. (2000). On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, Vol. 246(1), pp. 1–11, doi:10.1016/s0043-1648(00)00488-9.
  47. Lawn, B. R., Howes, V. R. (1981). Elastic recovery at hardness indentations. Journal of Materials Science, Vol. 16(10), pp. 2745–2752, doi:10.1007/bf00552957.
  48. Oliver, W. C., Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, Vol. 19(01), pp. 3–20, doi:10.1557/jmr.2004.19.1.3.
  49. Hansen, N. (2004). Hall–Petch relation and boundary strengthening. Scripta Materialia, Vol. 51(8), pp. 801–806, doi:10.1016/j.scriptamat.2004.06.002.
  50. Kang, X., Zhang, Z., Gou, L. (2020). Improvement in Electrical Conductivity of Boron-doped Diamond Films after Hydrogen Plasma and Vacuum Heat Treatment. Applied Surface Science, Vol. 526, pp. 1–27,

Full Text

© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU