Design and Manufacturing of Polymer Composite Materials Using Quality Management Methods | Journal of Engineering Sciences

Design and Manufacturing of Polymer Composite Materials Using Quality Management Methods

Author(s): Berladir K.1,2, Mitalova Z.2*, Pavlenko I.1,2, Trojanowska J.3, Ivanov V.1,2, Rudenko P.1

Affiliation(s):
1 Sumy State University, 2, Rymskogo-Korsakova St., Sumy 40007, Ukraine;
2 Technical University of Kosice, 1, Bayerova St., 08001 Presov, Slovak Republic;
3 Poznan University of Technology, 3, Piotrowo St., 61-138 Poznan, Poland

*Corresponding Author’s Address: [email protected]

Issue: Volume 10, Issue 2 (2023)

Dates:
Submitted: May 30, 2023
Received in revised form: September 4, 2023
Accepted for publication: September 26, 2023
Available online: September 29, 2023

Citation:
Berladir K., Mitalova Z., Pavlenko I., Trojanowska J., Ivanov V., Rudenko P. (2023). Design and manufacturing of polymer composite materials using quality management methods. Journal of Engineering Sciences (Ukraine), Vol. 10(2), pp. B16–B29. DOI: 10.21272/jes.2023.10(2).b3

DOI: 10.21272/jes.2023.10(2).b3

Research Area:  MANUFACTURING ENGINEERING: Technical Regulations and Metrological Support

Abstract. Many factors influence the design and manufacturing of products from polymer composite materials. The expert assessment method was applied in the article for the corresponding analysis. A cause-and-effect diagram was built as a result of a preliminary analysis of the influence of factors on the primary indicator of product quality indicators (e.g., wear resistance). Based on the expert assessment results and quality function deployment analysis, the most critical factors affecting wear resistance were obtained: polymer brand, filler shape and size, technological parameters of mixing, pressing, sintering, and mechanical processing. Their impact was studied to establish quantitative dependencies. A stable value of the wear resistance of the product in the manufacturing process can be ensured by timely adjustment of the mixing, pressing, and sintering modes. As a result of the structural analysis of the process of developing materials with predetermined properties at the enterprise according to the IDEF0 methodology, the importance of assessing the risks associated with the process of multi-criteria optimization of their main quality indicators was confirmed.

Keywords: industrial growth, polymer composite material, cause-and-effect diagram, process innovation, Pareto diagram, quality function deployment, product innovation, small enterprise.

References:

  1. Kumar, R., Sadeghi, K., Jang, J., Seo, J. (2023). Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. Science of the Total Environment, Vol. 882, 163446. https://doi.org/10.1016/j.scitotenv.2023.163446
  2. Vinod, A., Sanjay, M. R., Siengchin, S. (2023). Recently explored natural cellulosic plant fibers 2018–2022: A potential raw material resource for lightweight composites. Industrial Crops and Products, Vol. 192, 116099. https://doi.org/10.1016/j.indcrop.2022.116099
  3. Heim, D., Talvik, M., Wieprzkowicz, A., Ilomets, S., Knera, D., Kalamees, T., Czarny, D. (2023). European roadmap for the en-ActivETICS advancement and potential of the PV/PCM unventilated wall system application. Energy and Buildings, Vol. 294, 113207. https://doi.org/10.1016/j.enbuild.2023.113207
  4. Salahuddin, B., Faisal, S. N., Baigh, T. A., Alghamdi, M. N., Islam, M. S., Song, B., Xi, Z., Gao, S., Aziz, S. (2021). Carbonaceous materials coated carbon fibre reinforced polymer matrix composites. Polymers, Vol. 13(16), 2771. https://doi.org/10.3390/polym13162771
  5. Meyer, M. (2016). STAXX 50K – Standards for carbon composites production technology. SAE Technical Papers, Vol. 2016, 124620. https://doi.org/10.4271/2016-01-2114
  6. Du, G., Pettersson, L., Karoumi, R. (2018). Soil-steel composite bridge: An alternative design solution for short spans considering LCA. Journal of Cleaner Production, Vol. 189, pp. 647–661. https://doi.org/10.1016/j.jclepro.2018.04.097
  7. Langhorst, A. E., Burkholder, J., Long, J., Thomas, R., Kiziltas, A., Mielewski, D. (2018). Blue-agave fiber-reinforced polypropylene composites for automotive applications. BioResources, Vol. 13(1), pp. 820–835. https://doi.org/10.15376/biores.13.1.820-835
  8. Shamsuyeva, M., Endres, H.-J. (2021). Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Composites Part C: Open Access, Vol. 6, 100168. https://doi.org/10.1016/j.jcomc.2021.100168
  9. Rudin, E., Glüge, J., Scheringer, M. (2023). Per- and polyfluoroalkyl substances (PFASs) registered under REACH – What can we learn from the submitted data and how important will mobility be in PFASs hazard assessment? Science of the Total Environment, Vol. 877, 162618. https://doi.org/10.1016/j.scitotenv.2023.162618
  10. Ahlsell, L., Jalal, D., Khajavi, S. H., Jonsson, P., Holmström, J. (2023). Additive manufacturing of slow-moving automotive spare parts: A supply chain cost assessment. Journal of Manufacturing and Materials Processing, Vol. 7(1), 8. https://doi.org/10.3390/jmmp7010008
  11. Moujoud, Z., Sair, S., Ait Ousaleh, H., Ayouch, I., El Bouari, A., Tanane, O. (2023). Geopolymer composites reinforced with natural fibers: A review of recent advances in processing and properties. Construction and Building Materials, Vol. 388, 131666. https://doi.org/10.1016/j.conbuildmat.2023.131666
  12. Behie, S. W., Pasman, H. J., Khan, F. I., Shell, K., Alarfaj, A., El-Kady, A. H., Hernandez, M. (2023). Leadership 4.0: The changing landscape of industry management in the smart digital era. Process Safety and Environmental Protection, Vol. 172, pp. 317–328. https://doi.org/10.1016/j.psep.2023.02.014
  13. Zgalat-Lozynskyy, O. B. (2022). Materials and techniques for 3D printing in Ukraine (Overview). Powder Metallurgy and Metal Ceramics, Vol. 61(7-8), pp. 398–413. https://doi.org/10.1007/s11106-023-00327-y
  14. Berladir, K., Zhyhylii, D., Gaponova, O., Krmela, J., Krmelová, V., Artyukhov, A. (2022). Modeling of polymer composite materials chaotically reinforced with spherical and cylindrical inclusions. Polymers, Vol. 14, 2087. https://doi.org/10.3390/polym14102087
  15. Yin, A. T. M., Rahim, S. Z. A., Al Bakri Abdullah, M. M., Nabialek, M., Abdellah, A. E.-H., Rennie, A., Tahir, M. F. M., Titu, A. M. (2023). Potential of new sustainable green geopolymer metal composite (GGMC) material as mould insert for rapid tooling (RT) in injection moulding process. Materials, Vol. 16(4), 1724. https://doi.org/10.3390/ma16041724
  16. Zhang, S., Vanessa, C., Khan, A., Ali, N., Malik, S., Shah, S., Bilal, M., Yang, Y., Akhter, M. S., Iqbal, H. M. N. (2022). Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. Chemosphere, Vol. 305, 135291. https://doi.org/10.1016/j.chemosphere.2022.135291
  17. Kiyko, S., Druzhinin, E., Prokhorov, O., Haidabrus, B. (2020). Multi-agent model of energy consumption at the metallurgical enterprise. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, pp. 156–165. Springer, Cham. https://doi.org/10.1007/978-3-030-50794-7_16
  18. Qureshi, J. (2022). A review of recycling methods for fibre reinforced polymer composites. Sustainability, Vol. 14(24), 16855. https://doi.org/10.3390/su142416855
  19. Javanbakht, T. (2023). Optimization of graphene oxide’s characteristics with TOPSIS using an automated decision-making process. Journal of Engineering Sciences (Ukraine), Vol. 10(1), pp. E1–E7. https://doi.org/10.21272/jes.2023.10(1).e1
  20. Moon, J., Park, K., Park, S. (2022). Intelligent warping detection for fused filament fabrication of a metal-polymer composite filament. IFIP Advances in Information and Communication Technology, Vol. 663, pp. 267–273. https://doi.org/10.1007/978-3-031-16407-1_32
  21. Li, X., Zhao, Y. (2022). Nanocomposite building materials in modern architectural design. Journal of Nanomaterials, Vol. 2022, 1169911. https://doi.org/10.1155/2022/1169911
  22. Wang, M., Chen, H.-Y., Xing, Y.-J., Wei, H.-X., Li, Q., Chen, M.-H., Li, Q.-W., Xuan, Y.-M. (2015). Enhancing thermal conductive performance of vertically aligned carbon nanotube array composite by pre-annealing treatment. Journal of Nanoscience and Nanotechnology, Vol. 15(4), pp. 3212–3217. https://doi.org/10.1166/jnn.2015.9675
  23. Kashytskyi, V. P., Sadova, O. L., Melnychuk, M. D., Golodyuk, G. I., Klymovets, O. B. (2023). Structuring of modified epoxy composite materials by infrared spectroscopy. Journal of Engineering Sciences (Ukraine), Vol. 10(1), pp. C9–C16. https://doi.org/10.21272/jes.2023.10(1).c2
  24. Kumar, J., Singh, R. K., Xu, J. (2023). Optimization of sustainable manufacturing processes: A case study during drilling of laminated nanocomposites. Sustainable Materials and Manufacturing Technologies, Vol. 2023, pp. 29–43. https://doi.org/10.1201/9781003291961-4
  25. Maidin, N. A., Sapuan, S. M., Mastura, M. T., Zuhri, M. Y. M. (2023). Materials selection of thermoplastic matrices of natural fibre composites for cyclist helmet using an integration of DMAIC approach in six sigma method together with grey relational analysis approach. Journal of Renewable Materials, Vol. 11(5), pp. 2381–2397. https://doi.org/10.32604/jrm.2023.026549
  26. Frohn-Sörensen, P., Geueke, M., Tuli, T. B., Kuhnhen, C., Manns, M., Engel, B. (2021). 3D printed prototyping tools for flexible sheet metal drawing. International Journal of Advanced Manufacturing Technology, Vol. 115(7–8), pp. 2623–2637. https://doi.org/10.1007/s00170-021-07312-y
  27. Berladir, K., Trojanowska, J., Ivanov, V., Pavlenko, I. (2022). Materials selection in product development: challenges and quality management tools. In: Hamrol, A., Grabowska, M., Maletič, D. (eds) Advances in Manufacturing III. MANUFACTURING 2022. Lecture Notes in Mechanical Engineering, pp 72–86. Springer, Cham. https://doi.org/10.1007/978-3-031-00218-2_7
  28. Berladir, K.; Zhyhylii, D.; Brejcha, J.; Pozovnyi, O.; Krmela, J.; Krmelová, V.; Artyukhov, A. (2022). Computer simulation of composite materials behavior under pressing. Polymers, 14, 5288. https://doi.org/10.3390/polym14235288
  29. Pavlenko, I.; Piteľ, J.; Ivanov, V.; Berladir, K.; Mižáková, J.; Kolos, V.; Trojanowska, J. (2022). Using regression analysis for automated material selection in smart manufacturing. Mathematics, 10, 1888. https://doi.org/10.3390/math10111888
  30. Haidabrus, B., Grabis, J., Protsenko, S. (2021). Agile project management based on data analysis for information management systems. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering, pp. 174–182. Springer, Cham. https://doi.org/10.1007/978-3-030-77719-7_18
  31. Kujawinska, A., Rogalewicz, M., Piłacińska, M., Kochański, A., Hamrol, A., Diering, M. (2016). Application of dominance-based rough set approach (DRSA) for quality prediction in a casting process. Metalurgija, Vol. 55(4), pp. 821–824.
  32. Wang, H.; Sun, A.; Qi, X.; Dong, Y.; Fan, B. (2021). Experimental and analytical investigations on tribological properties of PTFE/AP composites. Polymers, 13, 4295. https://doi.org/10.3390/polym13244295
  33. Mazur, K., Gądek-Moszczak, A., Liber-Kneć, A., Kuciel, S. (2021). Mechanical behavior and morphological study of polytetrafluoroethylene (PTFE) composites under static and cyclic loading condition. Materials, Vol. 14, 1712. https://doi.org/10.3390/ma14071712

Full Text

© 2023 by the author(s).

This work is licensed under Creative Commons Attribution-Noncommercial 4.0 International License



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU