Design of Inorganic Polymer Composites for Electromagnetic Radiation Absorption Using Potassium Titanates | Journal of Engineering Sciences

Design of Inorganic Polymer Composites for Electromagnetic Radiation Absorption Using Potassium Titanates

Author(s): Lebedev V. V.1*, Miroshnichenko D. V.1, Nyakuma B. B.2, Moiseev V. F.1, Shestopalov O. V.1, Vyrovets S. V.1

1 National Technical University “Kharkiv Polytechnic Institute”, 2, Kyrpychova St., 61002 Kharkiv, Ukraine;
2 Hydrogen & Fuel Cell Laboratory, Institute of Future Energy, Universiti Teknologi Malaysia, BLOK S19 UTM Johor Bahru, 81310 Skudai, Johor Darul Takzim, Malaysia

*Corresponding Author’s Address: [email protected]

Issue: Volume 10, Issue 1 (2023)

Submitted: February 24, 2023
Received in revised form: May 8, 2023
Accepted for publication: May 15, 2023
Available online: May 19, 2023

Lebedev V. V., Miroshnichenko D. V., Nyakuma B. B., Moiseev V. F., Shestopalov O. V., Vyrovets S. V. (2023). Design of inorganic polymer composites for electromagnetic radiation absorption using potassium titanates. Journal of Engineering Sciences, Vol. 10(1), pp. C1-C8, doi: 10.21272/jes.2023.10(1).c1

DOI: 10.21272/jes.2023.10(1).c1

Research Area:  MANUFACTURING ENGINEERING: Materials Science

Abstract. This paper investigated the synthesis of inorganic polymer composites for electromagnetic radiation absorption using potassium titanates. The selected polyamide 6 and potassium polytitanate materials contain TiО2, K2СО3, and KCl obtained by charge sintering. Results showed that modification of polyamide 6 with sintering products in the form of a fine powder of potassium polytitanate that contains different phases K2O × 2TiO2, K2O × 4TiO2, and K2O × 6TiO2 which increased their strength properties. With increased potassium titanates (PTT) synthesis, a gradual transition from di to potassium hexatitanates occurs K2O × 2TiO2 – K2O × 4TiO2 – K2O × 6TiO2. The optimal content of potassium polytitanate was over 20 % by mass. To fully ensure the reinforcing effect due to the filling of potassium polytitanate polyamide 6, it is necessary to use whiskers K2O × 6TiO2, which can be collected by the additional crystallization of the amorphous charge sintering product. By designing experimental-statistical mathematical models in equal regressions, mathematical optimization of inorganic polymer composites for electromagnetic radiation absorption using PTT was carried out.

Keywords: polymer, composite, potassium titanates, synthesis, electromagnetic radiation, absorption, strength properties.


  1. Tong, X.C. (2008). Advanced materials and design for electromagnetic interference shielding (1st ed.). CRC Press, Boca Raton, USA, doi: 10.1201/9781420073591.
  2. Yu, W.C., Zhang, G.Q., Liu, Y.H., Xu, L., Yan, D.X., Huang, H.D., Tang, J.H., Xu, J.Z., Li, ZM (2019). Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chemical Engineering Journal, Vol. 373, pp. 556-564, doi: 10.3390/nano10040768.
  3. Wang, F., Wang, X., Zhu, J.F., Yang, H.B., Kong, X.G., Liu, X. (2016). Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties. Scientific Reports, Vol. 6, pp. 37892, doi: 10.1038/srep37892.
  4. Lv, R., Kang, F., Gu, J., Gui, X., Wei, J., Wang, K.,  Wu, D. (2008). Carbon nanotubes filled with ferromagnetic alloy nanowires: lightweight and wide-band microwave absorber. Applied Physics Letters, Vol. 93, pp. 223105, doi: 10.1063/1.3042099.
  5. Liu, Q.H., Xu, X.H., Xia, W.H., Che, R.C., Chen, C., Cao, Q., He, J. (2015). Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale, Vol. 7, pp. 1736–43, doi: 10.1039/c4nr05547k.
  6. Lv, H.L., Jia, G.B., Wang, M., Shang, C.M., Zhang, H.Q., Du, Y.W. (2014). Hexagonal-cone like of Fe50Co50 with broad frequency microwave absorption: effect of ultrasonic irradiation time. Journal of Alloys and Compounds, Vol. 615, pp. 1037–42, doi: 10.1016/j.jallcom.2014.07.118.
  7. Menga, F., Wanga, H., Huanga, F., Guoa, Y., Wanga, Z., Huib, D., Zhou, Z. (2018). Graphene-based microwave absorbing composites: A review and prospective. Composites Part B; Vol. 137, pp. 260–277, doi:10.1016/j.compositesb.2017.11.023
  8. Bibi, M., Abbas, S.M., Ahmad, N., Muhammad, B., Iqbal, Z., Rana, U.A., Khane, S.U. (2017). Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band. Composites Part B: Engineering, Vol. 114, pp. 139–48, doi: 10.1016/j.compositesb.2017.01.034.
  9. Rusly, S.N.A., Matori, K.A., Ismail, I., Abbas, Z., Awang, Z., Zulkimi, M.M.M., Idris, F.M., Zaid, M.H.M., Zulfikri, N.D. (2018). Microwave absorption properties of single- and double-layer coatings based on strontium hexaferrite and graphite nanocomposite. Journal of Materials Science: Materials in Electronics, Vol. 29, pp. 14031-14045, doi:10.1007/s10854-018-9535-9.
  10. Wanasinghe, D., Aslani, F. (2019). A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering, Vol. 176, pp. 107207, doi: 10.1016/j.compositesb.2019.107207.
  11. Rusly, S.N.A., Ismail, I., Matori, K.A., Abbas, Z., Shaari, A.H., Awang, Z., Ibrahim, I.R., Idris, F.M., Mohd Zaid, M.H., Mahmood, M.K.A., Hasan, I.H. (2020). Influence of different BFO filler content on microwave absorption performances in BiFeO3/epoxy resin composite. Ceramics International, Vol. 4, pp. 737-746, doi:         10.1016/j.ceramint.2019.09.027.
  12. Shah, A., Wang, Y.H., Huang, H., Zhang, L., Wang, D.X., Zhou, L., Duan, Y.P., Dong, X.L., Zhang, Z.D. (2015). Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/ epoxy resin composite plates. Composite Structures, Vol. 131, pp. 1132–41, doi: 10.1016/j.compstruct.2015.05.054.
  13. Al-Ghamdi, A.A., Al-Hartomy, O.A., A-Solamy, F.R., Dishovsky, N., Malinova, P., Atanasova, P., Atanasovde, N. (2016). Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Composites Part B: Engineering, Vol. 96, pp. 231–41, doi:10.1016/j.compositesb.2016.04.039.
  14. Hu, J.T., Zhao, T.K., Peng, X.R., Yang, W.B., Ji, X.L., Li, T.H. (2018). Growth of coiled amorphous carbon nanotube array forest and its electromagnetic wave absorbing properties. Composites Part B: Engineering, Vol. 134, pp. 91–7, doi: 10.1016/j.compositesb.2017.09.071.
  15. Makarova, T.L., Geydt, P., Zakharchuk, I., Lahderanta, E., Komlev, A.A., Zyrianova, A.A., Kanygin, M.A., Sedelnikova, O.V., Suslyaev, V.I., Bulusheva, L.G., Okotrub, A.V. (2016). Correlation between manufacturing processes and anisotropic magnetic and electromagnetic properties of carbon nanotube/polystyrene composites. Composites Part B: Engineering, Vol. 91, pp. 505–12, doi: 10.1016/j.compositesb.2016.01.040.
  16. Lebedev, V., Miroshnichenko, D., Z. Xiaobin, Pyshyev, S., Savchenko, D., Nikolaichuk, Y. (2021). Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Petroleum and Coal, Vol. 63(4), pp. 953-962.
  17. Zhu, G., Cui, X., Zhang, Y., Chen, S., Dong, M., Liu, H., Shao, Q., Ding, T., Wu, S., Guo, Z. (2019). Poly (vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer, Vol. 172, pp. 415-422, doi:10.1016/j.polymer.2019.03.056.
  18. Lai, H., Li, W., Xu, L., Wang, X., Jiao, H., Fan, Z., Lei, Z., Yuan,Y. (2020). Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding. Chemical Engineering Journal, Vol. 400, pp. 125322, doi: 10.1016/j.cej.2020.125322.
  19. Liang, C., Hamidinejad, M., Ma, L., Wang, Z., Park, C.B. 2020. Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon, Vol. 156, pp. 58-66, doi:10.1016/j.carbon.2019.09.044.
  20. Tjong, S.C., Meng, Y.Z. (1999). Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester. Polymer, 40(5), pp. 1109-1117, doi: 10.1016/S0032-3861(98)00340-1.
  21. Kim, T.W., Hur, S.G., Hwang, S.-J., Choy, J.-H. (2006). Layered titanate–zinc oxide nanohybrids with mesoporosity. Chemical Communications, Vol. 23, pp. 220–222, doi:10.1039/b511471c.
  22. Kim, T.W., Hwang, S.-J., Park, Y., Choi, W., Choy, J.H. (2007). Chemical bonding character and physicochemical properties of mesoporous zinc oxide-layered titanate nanocomposites. The Journal of Physical Chemistry C, Vol. 111, pp. 1658–1664, doi: 10.1039/b511471c.
  23. Kim, T.W., Han, A.R., Hwang, S.-J., Choy, J.-H. (2007). Local atomic arrangement and electronic configuration of nanocrystalline zinc oxide hybridized with redoxable 2D lattice of manganese oxide. The Journal of Physical Chemistry C, Vol. 111, pp. 16774–16780, doi: 10.1021/jp012704g.
  24. Kim, T.W., Ha, H.-W., Paek, M.-J., Hyun, S.H., Baek, I., Choy, J., Hwang, S. (2008). Mesoporous iron oxide-layered titanate nanohybrids: soft-chemical synthesis, characterization, and photocatalyst application. The Journal of Physical Chemistry C, Vol. 112, pp. 14853–14862, doi: 10.1021/jp805488h.
  25. Long, L., Wu, L., Yang, X., Li, X. (2014). Photoelectrochemical Performance of Nb-doped TiO2 Nanoparticles Fabricated by Hydrothermal Treatment of Titanate Nanotubes in Niobium Oxalate Aqueous Solution. Journal of Materials Science & Technology, Vol. 30(8), pp. 765-769, doi: 10.1016/j.jmst.2014.03.010.
  26. Lebedev, V., Miroshnichenko, D., Xiaobin, Z., Pyshyev,S., Savchenko, D. (2021). Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Petroleum and Coal, Vol. 63(3), pp. 646-654.
  27. Lebedev, V., Kryvobok, R., Cherkashina, A., Bliznyuk, A., Lisachuk, G., Tykhomyrova, T. (2022). Design and research polymer composites for absorption of electromagnetic radiation. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine, pp. 1-4, doi: 10.1109/KhPIWeek57572.2022.9916467.
  28. Yu, D., Wu, J., Zhou, L., Xie, D., Wu, S. (2000) The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Composites Science and Technology, Vol. 60, pp. 499-508, doi: 10.1016/S0266-3538(99)00149-9.

Full Text

© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU