Impact of the Closed, Semi-Opened, and Combined Contra-Rotating Stages on Volume Loss Characteristics | Journal of Engineering Sciences

Impact of the Closed, Semi-Opened, and Combined Contra-Rotating Stages on Volume Loss Characteristics

Author(s): Kulikov O.1, Ratushnyi O.1*, Moloshnyi O.2, Ivchenko O.1, Pavlenko I.1

Affiliation(s):
1 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Pompax Ltd., Wroclaw, Lower Silesia, Poland

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 1 (2022)

Dates:
Submitted: February 20, 2022
Accepted for publication: June 9, 2022
Available online: June 14, 2022

Citation:
Kulikov O., Ratushnyi O., Moloshnyi O., Ivchenko O., Pavlenko I. (2022). Impact of the closed, semi-opened, and combined contra-rotating stages on volume loss characteristics. Journal of Engineering Sciences, Vol. 9(1), pp. D6-D13, doi: 10.21272/jes.2022.9(1).d2

DOI: 10.21272/jes.2022.9(1).d2

Research Area:  MECHANICAL ENGINEERING: Dynamics and Strength of Machines

Abstract. The article is devoted to studying the contra-rotating stages with different impellers and blade discs. Determining the reduction of volumetric losses by modeling the contra-rotating stages in the software package ANSYS CFX. The work aimed to create and study the flow and characteristics: semi-open, closed impellers, and blade discs. As a result of the work, the following contra-rotating stages were determined and compared: the semi-opened impeller with the semi-opened blade disc; the closed impeller with the closed blade disc; the semi-opened impeller with the closed blade disc; the closed impeller with the semi-opened blade disc. As a result of research, fluid flows in contra-rotating stages and their characteristics in the form of pressure and efficiency were obtained. According to the obtained data, the expediency of using contra-rotating stages as a working body of the pump is written.

Keywords: pump, energy efficiency, semi-opened impeller, semi-opened blade disc.

References:

  1. Kulikov, A. A., Ratushnyi, A. V., Kovaliov, I. A., Mandryka, A. S., Ignatiev, A. S. (2021). Numerical study of the centrifugal contra rotating blade system. Journal of Physics: Conference Series, Vol. 1741, 012008, doi: 10.1088/1742-6596/1741/1/012008.
  2. Cao, L., Watanabe, S., Momosaki, S., Imanishi, T., Furukawa, A. (2013). Low speed design of rear rotor in contra-rotating axial flow pump. International Journal of Fluid Machinery and Systems, Vol. 6(2), pp. 105-112, doi: 10.5293/IJFMS.2013.6.2.105.
  3. Cao, L., Watanabe, S., Honda, H., Yoshimura, H., Furukawa, A. (2014). Experimental investigation of blade-to-blade pressure distribution in contra-rotating axial flow pump. International Journal of Fluid Machinery and Systems, Vol. 7(4), pp. 130-141, doi: 10.5293/IJFMS.2014.7.4.130.
  4. Cao, L. L., Watanabe, S., Imanishi, T., Yoshimura, H., Furukawa, A. (2013). Blade rows interaction in contra-rotating axial flow pump designed with different rotational speed concept. IOP Conference Series: Materials Science and Engineering, Vol. 52(2), doi: 10.1088/1757-899X/52/2/022004.
  5. Furukawa, A., Takano, T., Shigemitsu, T., Okuma, K., Watanabe, S. (2006). Blade rows interaction of contra-rotating axial flow pump in pressure field on casing wall. JSME International Journal, Series B: Fluids and Thermal Engineering, Vol. 49(3), pp. 670-677, doi: 10.1299/jsmeb.49.670.
  6. Shigemitsu, T., Furukawa, A., Watanabe, S., Okuma, K., Fukutomi, J. (2008). Internal flow measurement with LDV at design point of contra-rotating axial flow pump. Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 74(5), pp. 1091-1097, doi: 10.1299/kikaib.74.1091.
  7. Shigemitsu, T., Watanabe, S., Furukawa, A., Okuma, K. (2005). Air/water two-phase flow performance of contra-rotating axial flow pump and rotational speed control of rear rotor. Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005, pp. 912-917, doi: 10.1115/FEDSM2005-77002.
  8. Zhamalov, A. Z., Obozov, A. D., Issaev, S. A., Kunelbayev, M. M., Baikadamova, L. S. (2013). Simulation model of two-rotor wind turbine with counter-rotation. World Applied Sciences Journal, Vol. 22(2), pp. 215-219, doi: 10.5829/idosi.wasj.2013.22.02.19313.
  9. Xiuli, W., Bin, L., Yang, L., Yan, Z., Rongsheng, Z., Yun, L., Qiang, F. (2020). Hydraulic optimization of two-way counter-rotating axial flow pump turbine. Frontiers in Energy Research, Vol. 8, 577232, doi: 10.3389/fenrg.2020.577232.
  10. Barbarelli, S., Castiglione, T., Florio, G., Scornaienchi, N. M., Zupone, G. L. (2016). Design and numerical analysis of a double rotor turbine prototype operating in tidal currents. Energy Procedia, Vol. 101, pp. 1199-1206, doi: 10.1016/j.egypro.2016.11.162.
  11. Rajeevalochanam, P., Sunkara, S. N. A., Ramana Murthy, S. V., Kumaran, R. S. (2020). Design of a two spool contra-rotating turbine for a turbo-fan engine. Propulsion and Power Research, Vol. 9(3), pp. 225-239, doi: 10.1016/j.jppr.2020.08.001.

Full Text



© 2014-2024 Sumy State University
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights are reserved by SumDU