Impact of the Closed, Semi-Opened, and Combined Contra-Rotating Stages on Volume Loss Characteristics

Author(s): Kulikov O.1, Ratushnyi O.1*, Moloshnyi O.2, Ivchenko O.1, Pavlenko I.1

1 Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Pompax Ltd., Wroclaw, Lower Silesia, Poland

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 1 (2022)

Submitted: February 20, 2022
Accepted for publication: June 9, 2022
Available online: June 14, 2022

Kulikov O., Ratushnyi O., Moloshnyi O., Ivchenko O., Pavlenko I. (2022). Impact of the closed, semi-opened, and combined contra-rotating stages on volume loss characteristics. Journal of Engineering Sciences, Vol. 9(1), pp. D6-D13, doi: 10.21272/jes.2022.9(1).d2

DOI: 10.21272/jes.2022.9(1).d2

Research Area:  MECHANICAL ENGINEERING: Dynamics and Strength of Machines

Abstract. The article is devoted to studying the contra-rotating stages with different impellers and blade discs. Determining the reduction of volumetric losses by modeling the contra-rotating stages in the software package ANSYS CFX. The work aimed to create and study the flow and characteristics: semi-open, closed impellers, and blade discs. As a result of the work, the following contra-rotating stages were determined and compared: the semi-opened impeller with the semi-opened blade disc; the closed impeller with the closed blade disc; the semi-opened impeller with the closed blade disc; the closed impeller with the semi-opened blade disc. As a result of research, fluid flows in contra-rotating stages and their characteristics in the form of pressure and efficiency were obtained. According to the obtained data, the expediency of using contra-rotating stages as a working body of the pump is written.

Keywords: pump, energy efficiency, semi-opened impeller, semi-opened blade disc.


  1. Kulikov, A. A., Ratushnyi, A. V., Kovaliov, I. A., Mandryka, A. S., Ignatiev, A. S. (2021). Numerical study of the centrifugal contra rotating blade system. Journal of Physics: Conference Series, Vol. 1741, 012008, doi: 10.1088/1742-6596/1741/1/012008.
  2. Cao, L., Watanabe, S., Momosaki, S., Imanishi, T., Furukawa, A. (2013). Low speed design of rear rotor in contra-rotating axial flow pump. International Journal of Fluid Machinery and Systems, Vol. 6(2), pp. 105-112, doi: 10.5293/IJFMS.2013.6.2.105.
  3. Cao, L., Watanabe, S., Honda, H., Yoshimura, H., Furukawa, A. (2014). Experimental investigation of blade-to-blade pressure distribution in contra-rotating axial flow pump. International Journal of Fluid Machinery and Systems, Vol. 7(4), pp. 130-141, doi: 10.5293/IJFMS.2014.7.4.130.
  4. Cao, L. L., Watanabe, S., Imanishi, T., Yoshimura, H., Furukawa, A. (2013). Blade rows interaction in contra-rotating axial flow pump designed with different rotational speed concept. IOP Conference Series: Materials Science and Engineering, Vol. 52(2), doi: 10.1088/1757-899X/52/2/022004.
  5. Furukawa, A., Takano, T., Shigemitsu, T., Okuma, K., Watanabe, S. (2006). Blade rows interaction of contra-rotating axial flow pump in pressure field on casing wall. JSME International Journal, Series B: Fluids and Thermal Engineering, Vol. 49(3), pp. 670-677, doi: 10.1299/jsmeb.49.670.
  6. Shigemitsu, T., Furukawa, A., Watanabe, S., Okuma, K., Fukutomi, J. (2008). Internal flow measurement with LDV at design point of contra-rotating axial flow pump. Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 74(5), pp. 1091-1097, doi: 10.1299/kikaib.74.1091.
  7. Shigemitsu, T., Watanabe, S., Furukawa, A., Okuma, K. (2005). Air/water two-phase flow performance of contra-rotating axial flow pump and rotational speed control of rear rotor. Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, FEDSM2005, pp. 912-917, doi: 10.1115/FEDSM2005-77002.
  8. Zhamalov, A. Z., Obozov, A. D., Issaev, S. A., Kunelbayev, M. M., Baikadamova, L. S. (2013). Simulation model of two-rotor wind turbine with counter-rotation. World Applied Sciences Journal, Vol. 22(2), pp. 215-219, doi: 10.5829/idosi.wasj.2013.22.02.19313.
  9. Xiuli, W., Bin, L., Yang, L., Yan, Z., Rongsheng, Z., Yun, L., Qiang, F. (2020). Hydraulic optimization of two-way counter-rotating axial flow pump turbine. Frontiers in Energy Research, Vol. 8, 577232, doi: 10.3389/fenrg.2020.577232.
  10. Barbarelli, S., Castiglione, T., Florio, G., Scornaienchi, N. M., Zupone, G. L. (2016). Design and numerical analysis of a double rotor turbine prototype operating in tidal currents. Energy Procedia, Vol. 101, pp. 1199-1206, doi: 10.1016/j.egypro.2016.11.162.
  11. Rajeevalochanam, P., Sunkara, S. N. A., Ramana Murthy, S. V., Kumaran, R. S. (2020). Design of a two spool contra-rotating turbine for a turbo-fan engine. Propulsion and Power Research, Vol. 9(3), pp. 225-239, doi: 10.1016/j.jppr.2020.08.001.

Full Text