Membrane Processes during the Regeneration of Galvanic Solution

Author(s): Serdiuk V. O.1, Sklavbinskyi V. I.1, Bolshanina S. B.1*, Ivchenko V. D.2, Qasim M. N.3, Zaytseva K. O.1

1 Sumy State University, 2 Rymskogo-Korsakova St., Sumy 40007, Ukraine;
2 Sumy National Agrarian University, 160 H. Kondratieva St., Sumy 40021, Ukraine;
3 Institute of Technology, Middle Technical University, Baghdad, Iraq

*Corresponding Author’s Address: [email protected]

Issue: Volume 5; Issue 2 (2018)

Paper received: June 21, 2018
The final version of the paper received: October 2, 2018
Paper accepted online: October 5, 2018

Serdiuk V. O. Membrane Processes during the Regeneration of Galvanic Solution / V. O. Serdiuk, V. I. Sklavbinskyi, S. B. Bolshanina, V. D. Ivchenko, M. N. Qasim, K. O. Zaytseva // Journal of Engineering Sciences. – Sumy : Sumy State University, 2018. – Volume 5, Issue 2. – P. F1-F6.

DOI: 10.21272/jes.2018.5(2).f1

Research Area: CHEMICAL ENGINEERING: Processes in Machines and Devices

Abstract. The transfer through the cation exchange membrane of Cd2+ and Zn2+ cations present as impurities in chromium-containing galvanic solutions has studied. Methods for constructing current-voltage characteristics, scanning electron microscopy and X-ray microanalysis were used. This process allows regenerating galvanic solutions and reducing the technogenic load of galvanic plants.

Keywords: electrolysis, galvanic solution, ion-exchange membrane, chromium-containing solution, cadmium cations, zinc cations.


  1. Qian, Y., Huang, L., Pan, Y., Quan, X., Lian, H., & Yang, J. (2017). Dependency of migration and reduction of mixed Cr2O72–, Cu2+ and Cd2+ on electric field, ion exchange membrane and metal concentration in microbial fuel cells. Separation and Purification Technology, Vol. 192, No. 9, pp. 78–87, doi: 10.1016/j.seppur.2017.09.049.
  2. Bolshanina, S. B. (2016). Chemical Industry in Ukraine, Vol. 1 (132), pp. 13 [in Russian].
  3. Yao, Y., Wei, Q., Sun, M., Chen, Y., & Ren, X. (2013). The Royal Society of Chemistry, Vol. 3, Art. no. 13131.
  4. Bolshanina, S. B., Ablieyeva, I. Yu., Kyrychenko, O. M., Altunina L. L., Klimanov O. B., & Serdiuk, V. O. (2016). Method of Electrolytic Regeneration of Chromium-Containing Solutions. Patent of Ukraine, No. 109623, MPC (2006.01) C02F 1/46.
  5. Benvenuti, T., Krapf, R. S., Rodrigues, M. A. S., Bernardes, A. M., & Zoppas-Ferreira, J. (2014). Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Separation and Purification Technology, Vol. 129, No. 29, pp. 106–112, doi: 10.1016/j.seppur.2014.04.002.
  6. Dimitris, P., Zagklis, E. C., Arvaniti, V. G., et al. (2013). Sustainability analysis and benchmarking of olive mill wastewater treatment methods. Journal of Chemical Technology and Biotechnology, Vol. 88, pp. 742–750.
  7. Kruglikov, S. S., & Kolotovkina, N. S. (2013). Electroplating and Surface Treatment, Vol. 21, No. 3, pp. 63 [in Russian].
  8. Kruglikov, S. S., Kolotovkina, N. S., et al. (2008). Electroplating and Surface Treatment, Vol. 16, No. 1, pp. 34 [in Russian].
  9. Nekrasova, N. E., Nevmyatullina, Kh. A., Kharin, P. A., & Kruglikova, E. S. (2016). Application of a two-chamber immersion electrochemical module for increasing the stability of a lead anode in aggressive media. Electroplating and Surface Treatment, Vol. 24, No. 1, pp. 22.
  10. Turek, M., Mitko, K., Chorazewska, M., & Dydo, P. (2013). Use of the desalination brines in the saturation of membrane electrolysis feed. Desalination and Water Treatment, Vol. 51, рр. 2749–2754.
  11. Davoudi, M., Gholami, M., Naseri, S., Mahvi, A. H., Farzadkia, M., Esrafili, A., & Alidadi, H. (2014). Application of electrochemical reactor divided by cellulosic membrane for optimized simultaneous removal of phenols, chromium, and ammonia from tannery effluents. Toxicological and Environmental Chemistry, Vol. 96, Issue 9, pp. 1310–1332.
  12. Carrillo-Abad, J., Garcia-Gabaldon, M., & Perez-Herranz, V. (2017). pH effect on zinc recovery from the spent pickling baths of hot dip galvanizing industries. Separation and Purification Technology, Vol. 177, No. 28, pp. 21–28.
  13. Abbasi-Garravand, E., & Mulligan, C. N. (2014). Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water. Separation and Purification Technology, Vol. 132, No. 20, pp. 505–512.
  14. Hu, Ch.-Y., Shih, K., & Leckie, J. O. (2010). Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge, Journal of Hazardous Materials, Vol. 181, Issue 1, pp. 399–404.
  15. Durgun, , & Ertan, R. (2014). Experimental investigation of FDM process for improvement of mechanical properties andproduction cost. Rapid Prototyping Journal, Vol. 20, Issue 3, pp. 228–235, doi: 10.1108/RPJ-10-2012-0091.
  16. Wenner, S., Jones, L., & Marioara, C. D., Holmestad, R. (2017). Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy, Micron, 96, pp. 103–111, doi: 10.1016/j.micron.2017.02.007.

Full Text