Modeling of Smart Bio-Medical Active Polymeric Hydrogel Transdermal Materials

Author(s): Lebedeva K. O.1, Cherkashina A. M.1, Masikevych Y. G.2, Masikevych A. Y.2, Voronkin A. A.1, Lebedev V. V.1*

Affiliation(s):
1 National Technical University “Kharkiv Polytechnic Institute”, 2, Kyrpychova St., 61002 Kharkiv, Ukraine;
2 Bucovinian State Medical University, 2, Theater Square, 58002, Chernivtsi, Ukraine

*Corresponding Author’s Address: [email protected]

Issue: Volume 11, Issue 1 (2024)

Dates:
Submitted: May 28, 2023
Received in revised form: January 7, 2024
Accepted for publication: January 25, 2024
Available online: February 5, 2024

Citation:
Lebedeva K. O., Cherkashina A. M., Masikevych Y. G., Masikevych A. Y., Voronkin A. A., Lebedev V. V. (2024). Modeling of smart bio-medical active polymeric hydrogel transdermal materials. Journal of Engineering Sciences (Ukraine), Vol. 11(1), pp. C1–C7. https://doi.org/10.21272/jes.2024.11(1).c1

DOI: 10.21272/jes.2024.11(1).c1

Research Area:  Materials Science

Abstract. In this article, effective 3D printing modeling technology of smart bio-medical polymeric hydrogel transdermal materials based on gelatin and sodium alginate, modified by humic acids, was researched. Such smart biologically active polymeric hydrogel materials showed interesting applicability in tissue engineering fields due to their intrinsic biological compatibility, adaptability, and capacity to replicate the extracellular matrix environment. A literature review was carried out and proved that 3D printing modeling technology is a perspective for the functional effect on the smart bio-medical polymer hydrogel transdermal properties. Smart biomedical polymeric transdermal hydrogel patches were produced using a micromolding technique. A stereolithography (SLA) 3D printer was used to print the master mold. The three-stage technology of lignite humic acids modification of smart biologically active polymeric hydrogel transdermal microneedles patches based on gelatin, hydroxypropyl methylcellulose, and sodium alginate was designed. It was shown that modification of gelatin-sodium alginate and hydroxypropyl methylcellulose-sodium alginate biopolymer hydrogels by humic acids makes it possible to obtain smart biologically active polymeric hydrogel transdermal materials with an increased swelling degree and ability to improve the skin moisture-lipid balance (from the initial moisture 34–36 % and fatness 8–10, they increase to 58–66 % and 52–60 %). Finally, the developed 3D printing modeling technology of smart bio-medical polymeric hydrogel transdermal materials hydrogel based on gelatin sodium alginate, modified by humic acids, is a transdermal material with required properties.

Keywords: smart material, 3D printing technology, sodium alginate, humic acid.

References:

  1. El-Ghoul, Y., Alminderej, F. M., Alsubaie, F. M., Alrasheed, R., Almousa, N. H. (2021). Recent advances in functional polymer materials for energy. Water, and biomedical applications: A review. Polymers, Vol. 13, 4327. https://doi.org/10.3390/polym13244327
  2. Langer, R., Vacanti, J. P. (1993). Tissue engineering. Science, Vol. 260(5110), pp. 920–926. https://doi.org/10.1126/science.8493529
  3. Khan, F., Tanaka, M. (2018). Designing smart biomaterials for tissue engineering. International Journal of Molecular Sciences, Vol. 19(1), 17. https://doi.org/10.3390/ijms19010017
  4. Bose, S., Vahabzadeh, S., Bandyopadhyay, A. (2013). Bone tissue engineering using 3D printing. Materials Today, Vol. 16, pp. 496–504. https://doi.org/10.1016/j.mattod.2013.11.017
  5. Ng, W. L., Wang, S., Yeong, W. Y., Naing, M. W. (2021). Skin Bioprinting: Impending Reality or Fantasy? Trends in Biotechnology, Vol. 34, pp. 689–699. https://doi.org/10.1016/j.tibtech.2016.04.006
  6. An, J., Chua, C. K., Mironov, V. (2015). A Perspective on 4D. International Journal of Bioprinting, Vol. 2, pp. 3–5. https://doi.org/10.18063/IJB.2016.01.003
  7. Bahcecioglu, G., Hasirci, N., Bilgen, B., Hasirci, V. (2019). A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication, Vol. 11(2), 025002. https://doi.org/10.1088/1758-5090/aaf707
  8. Municoy, S., Álvarez Echazú, M. I., Antezana, P. E., Galdopórpora, J. M., Olivetti, C., Mebert, A. M., Foglia, M. L., Tuttolomondo, M. V., Alvarez, G. S., Hardy, J. G., Desimone, M. F. (2020). Stimuli-responsive materials for tissue engineering and drug delivery. International Journal of Molecular Sciences, Vol. 21, 4724. https://doi.org/10.3390/ijms21134724
  9. Lebedev, V., Miroshnichenko, D., Xiaobin, Z., Pyshyev, S., Savchenko, D. (2021). Technological properties of polymers obtained from humic acids of Ukrainian lignite. Petroleum & Coal, Vol. 63(3), pp. 646–654.
  10. Miroshnichenko, D., Lebedeva, K., Cherkashina, A., Lebedev, V., Tsereniuk, O., Krygina, N. (2022). Study of hybrid modification with humic acids of environmentally safe biodegradable hydrogel films based on hydroxypropyl methylcellulose. C-Journal of Carbon Research, Vol. 8, 71. https://doi.org/10.3390/c8040071
  11. Binder, L., Mazál, J., Petz, R., Klang, V., Valenta, C. (2019). The role of viscosity on skin penetration from cellulose ether-based hydrogels. Skin Research and Technology, Vol.25(5), pp. 725–734. https://doi.org/10.1111/srt.12709
  12. Bhushan, B., Caspers, M. (2017). An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, Vol. 23, pp. 1117–1124. https://doi.org/10.1007/s00542-017-3342-8
  13. Christensen, K., Davis, B., Jin, Y., Huang, Y. (2018). Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures. Materials Science and Engineering: C, Vol. 89, pp. 65–74. https://doi.org/10.1016/j.msec.2018.03.014
  14. Jung, J. H., Jin, S. G. (2021). Microneedle for transdermal drug delivery: current trends and fabrication. Journal of Pharmaceutical Investigation, Vol. 51 (5), pp. 503–517. https://doi.org/10.1007/s40005-021-00512-4
  15. Chen, C., Huang, B., Liu, Y., Liu, F., Lee, I. S. (2023). Functional engineering strategies of 3D printed implants for hard tissue replacement. Regenerative Biomaterials, Vol. 10, rbac094. https://doi.org/10.1093/rb/rbac094
  16. Tsegay, F., Elsherif, M., Butt, H. (2022). Smart 3D printed hydrogel skin wound bandages: A review. Polymers, Vol. 14(5), 1012. https://doi.org/10.3390/polym14051012
  17. Nagarkar, R., Singh, M., Nguyen, H. X., Jonnalagadda, S. (2020). A review of recent advances in microneedle technology for transdermal drug delivery. Journal of Drug Delivery Science and Technology, Vol. 59, 101923. https://doi.org/10.1016/j.jddst.2020.101923
  18. Xu, J., Xu, D., Xuan, X., He, H. (2021). Advances of microneedles in biomedical applications. Moleculesm, Vol. 26(19), 5912. https://doi.org/10.3390/molecules26195912
  19. Montoya, C., Du, Y., Gianforcaro, A. L., Orrego, S., Yang, M., Lelkes, P. I. (2021). On the road to smart biomaterials for bone research: Definitions, concepts, advances, and outlook. Bone Research, Vol. 9, 12. https://doi.org/10.1038/s41413-020-00131-z
  20. Bhatnagar, S., Chawla, S. R., Kulkarni, O. P., Venuganti. V. V. K. (2017). Zein microneedles for transcutaneous vaccine delivery: Fabrication, characterization, and in vivo evaluation using ovalbumin as the model antigen. ACS Omega, Vol. 2(4), pp. 1321–1332. https://doi.org/10.1021/acsomega.7b00343
  21. Lee, I.-C., He, J.-S., Tsai, M.-T., Lin, K.-C. (2015). Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. Journal of Materials Chemistry. B, Vol. 3, pp. 276–285. https://doi.org/10.1039/c4tb01555j
  22. Wang, P.-C., Wester, B. A., Rajaraman, S., Paik, S.-J., Kim, S.-H., Allen, M. G. (2009). Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. In: Annual International Conference of the IEEE; Engineering in Medicine and Biology Society, Vol. 3(6), pp. 7026–7029. https://doi.org/10.1109/IEMBS.2009.5333317
  23. Stenlund, P., Enstedt, L., Gilljam, K. M., Standoft, S., Ahlinder, A., Johnson, M. L., Lund, H., Fureby, A. M., Berglin, M. (2023). Development of an all-marine 3D printed bioactive hydrogel dressing for treatment of hard-to-heal wounds. Polymers, Vol. 15(12), 2627. https://doi.org/10.3390/polym15122627
  24. Agrawal, A., Hussain, C. M. (2023). 3D-printed hydrogel for diverse applications: A review. Gels, Vol. 9(12), 960. https://doi.org/10.3390/gels9120960
  25. Kapusta, O., Jarosz, A., Stadnik, K., Giannakoudakis, D. A., Barczyński, B., Barczak, M. (2023). Antimicrobial natural hydrogels in biomedicine: Properties, applications, and challenges – A concise review. International Journal of Molecular Sciences, Vol. 24, 2191. https://doi.org/10.3390/ijms24032191
  26. Kaliaraj, G. S., Shanmugam, D. K., Dasan, A., Mosas, K. K. A. (2023). Hydrogels – A promising materials for 3D printing technology. Gels, Vol. 9(3), 260. https://doi.org/10.3390/gels9030260
  27. Jung, H., Kim, M. K., Lee, J. Y., Choi, S. W., Kim, J. (2020). Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater., Vol. 30, 2070280. https://doi.org/10.1002/adfm.202004407
  28. Kaklamani, G., Kazaryan, D., Bowen, J., Iacovella, F., Anastasiadis, S. H., Deligeorgis, G. (2018). On the electrical conductivity of alginate hydrogels. Regenerative Biomaterials, Vol. 5, pp. 293–301. https://doi.org/10.1093/rb/rby019
  29. Kim, M., Jung, B., Park, J. H. (2012). Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials, Vol. 33(2), pp. 668–678. https://doi.org/10.1016/j.biomaterials.2011.09.074
  30. Quattrone, A., Czajka, A., Sibilla, S. (2017). Thermosensitive hydrogel mask significantly improves skin moisture and skin tone. Bilateral clinical trial. Cosmetics, Vol.4(2), 17. https://doi.org/10.3390/cosmetics4020017

Full Text

© 2024 by the author(s).

This work is licensed under Creative Commons Attribution-Noncommercial 4.0 International License