## Numerical Investigation of the Concave-Cut Baffles Effect in Shell-and-Tube Heat Exchanger

**Author(s): **Petinrin M. O.^{*}, Dare A. A.

**Affiliation(s): **University of Ibadan, Oduduwa Rd, 200284 Ibadan, Oyo State, Nigeria

** ^{*}Corresponding Author’s Address: **layopet01@yahoo.com

**Issue:** Volume 6; Issue 1 (2019)

**Dates:**Paper received: August 5, 2018

The final version of the paper received: December 24, 2018

Paper accepted online: December 29, 2018

**Citation:**Petinrin, M. O., Dare, A. A. (2019). Numerical investigation of the concave-cut baffles effect in shell-and-tube heat exchanger. Journal of Engineering Sciences, Vol. 6(1), pp. E1-E9, doi: 10.21272/jes.2019.6(1).e1

**DOI:** 10.21272/jes.2019.6(1).e1

**Research Area: ** MECHANICAL ENGINEERING: Computational Mechanics

**Abstract.** In this paper, the performance of shell-and-tube heat exchangers with single-segmental baffle and varying configurations of concave-cut baffles (10, 15 and 20 %) was investigated. The study was carried out for a heat exchanger having either engine oil, water and air as shell-side fluid. For each configuration of the baffles, the results of both the the *k-ε* and RNG *k-ε* turbulent models were in very close agreement. The heat exchangers with concave-cut baffles had higher pressure drops and lower performance factors than that of single-segmental baffle at the same range of mass flow rates for all fluid cases. Also, the concave-cut baffle heat exchangers had lower shell-side heat transfer coefficients at the same pressure drop against that of single-segmental baffles. Thus, the use of concave-cut baffles did not exhibit desirable performance in heat exchanger as compared with the segmental baffles.

**Keywords:** shell-and-tube heat exchanger, pressure drop, weighted performance factor, weighted heat transfer coefficient, concave-cut baffle.

**References:**

- Dubey, V. V. P., Verma, R. R., Verma, P. S., & Srivastava, A. K. (2014). Steady State Thermal Analysis of Shell and Tube Type Heat Exchanger to Demonstrate the Heat Transfer Capabilities of Various Thermal Materials using Ansys.
*Glob. Journals Inc.*, Vol. 14, pp. 1–7. - Kapale, U. C., & Chand, S. (2006). Modeling for shell-side pressure drop for liquid flow in shell-and-tube heat exchanger.
*Int. J. Heat Mass Transf.*, Vol. 49, pp. 601–610, doi: 10.1016/j.ijheatmasstransfer.2005.08.022. - Nasiruddin, M. H. K. (2007). Heat transfer augmentation in a heat exchanger tube using a baffle.
*Int. J. Heat Fluid Flow*, Vol. 28, pp. 318–328, doi: 10.1016/j.ijheatfluidflow.2006.03.020. - Petinrin, M. O., & Dare, A. A. (2016). Performance of Shell and Tube Heat Exchangers with Varying Tube Layouts.
*Br. J. Appl. Sci. Technol.*, Vol. 12, pp. 1–8, doi: 10.9734/BJAST/2016/20021. - Wang, Q., Zeng, M., Ma, T., Du, X., & Yang, J. (2014). Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization.
*Appl. Energy*, doi: 10.1016/j.apenergy.2014.05.004. - Zhou, J. F., Wu, S. W., Chen, Y., & Shao, C. L. (2015). Semi-numerical analysis of heat transfer performance of fractal based tube bundle in shell-and-tube heat exchanger.
*Int. J. Heat Mass Transf.*, Vol. 84, pp. 282–292, doi: 10.1016/j.ijheatmasstransfer.2015.01.038. - Mohammadi, K., & Malayeri, M. R. (2013). Parametric study of gross flow maldistribution in a single-pass shell and tube heat exchanger in turbulent regime.
*Int. J. Heat Fluid Flow*, Vol. 44, pp. 14–27, doi: 10.1016/j.ijheatfluidflow.2013.02.010. - Wang, Q., Chen, G., Zeng, M., Chen, Q., Peng, B., Zhang, D., & Luo, L. (2010). Shell-side heat transfer enhancement for shell-and-tube heat exchangers by helical baffles.
*Chem. Eng. Trans.*, Vol. 21, pp. 217–222, doi: 10.3303/CET1021037. - El Maakoul, A., Laknizi, A., Saadeddine, S., El Metoui, M., Zaite, A., Meziane, M., & Ben Abdellah, A. (2016). Numerical comparison of shell-side performance for shel and tube exchangers with trefoil-hole, helical and segmental baffles.
*Appl. Therm. Eng.*, doi: 10.1016/j.applthermaleng.2016.08.067. - Zhou, G., Xiao, J., Zhu, L., Wang, J., & Tu, S. (2015). A numerical study on the shell-side turbulent heat transfer enhancement of shell-and-tube heat exchanger with trefoil-hole baffles.
*Energy Procedia*, Vol. 75, pp. 3174–3179, doi: 10.1016/j.egypro.2015.07.656. - Wang, Y., Dong, Q., & Liu, M. (2007). Characteristics of Fluid flow and heat transfer in Shellside of Heat Exchangers with Longitudinal Flow of Shellside Fluid with Different Supporting structures.
*Challenges of Power Engineering and Environment, Springer*, pp. 474–475. - You, Y., Fan, A., Lai, X., Huang, S., & Liu, W. (2013). Experimental and numerical investigations of shell-side thermo-hydraulic performances for shell-and-tube heat exchanger with trefoil-hole baffles.
*Therm. Eng.*, Vol. 50, pp. 950–956, doi: 10.1016/j.applthermaleng.2012.08.034. - Ozden, E., & Tari, (2010). Shell side CFD analysis of a small shell-and-tube heat exchanger.
*Energy Convers. Manag.*, Vol. 51, pp. 1004–1014, doi: 10.1016/j.enconman.2009.12.003. - Kuppan, T. (2013).
*Heat Exchanger Design*.*Taylor**and Francis, Boca Raton*. - Shah, R. K., & Sekulic, D. P. (2003).
*Fundamentals of heat exchanger design*.*John Wiley and Sons, Hoboken*. - Mukherjee, R. (1998). Effectively design shell-and-tube heat exchangers.
*Eng. Prog.* - Sinnott, R. K. (2005).
*Chemical Engineering Design*. Coulson & Richardson’s Chemical Engineering, Elsevier, Butterworth-Heinemann, Oxford. - Bouhairie, S. (2012). Selecting Baffles for Shell-and-Tube Heat Exchangers.
*Heat Transf.*, pp. 27–33. - Jozaei, A. F., Baheri, A., Hafshejani, M. K., & Arad, A. (2012). Optimization of Baffle Spacingon Heat Transfer, Pressure Drop and Estimated Price in a Shell-and-Tube Heat Exchanger.
*World Appl. Sci. J.*, Vol. 18, pp. 1727–1736, doi: 10.5829/idosi.wasj.2012.18.12.2484. - Prasanna, V., Purushothama, H. R., et al. (2013). A numerical analysis of hydrodynamic and heat transfer effects of shell-and-tube heat exchanger for different baffle space and cut.
*Confab.*, Vol. 2. - Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2011).
*Fundamentals of heat and mass transfer*. John Wiley and Sons, New Jersey. - Cengel, Y. A., & Ghajar, A. J. (2015).
*Heat and mass transfer: fundamentals and applications*. McGraw-Hill, New York. - You, Y., Chen, Y., Xie, M., Luo, X., Jiao, L., & Huang, S. (2015). Numerical simulation and performance improvement for a small size shell-and-tube heat exchanger with trefoil-hole baffles.
*Therm. Eng.*, Vol. 89, pp. 220–228, doi: 10.1016/j.applthermaleng.2015.06.012. - Tannehill, J. C., Anderson, D. A., & Pletcher, R. H. (1997).
*Computational fluid mechanics and heat transfer*. Taylor and Francis, Washington. - Wilcox, D. C. (2006).
*Turbulence modeling for CFD*. DCW Industries, California. - Marzouk, O. A., Huckaby, E. D. (2010). Simulation of a swirling gas-particle flow using different k-epsilon models and particle-parcel relationships.
*Lett.*, Vol. 18. - COMSOL (2013).
*CFD module user’s guide*. COMSOL - Fries, T., & Matthies, H. G. (2004). A Review of Petrov-Galerkin Stabilization Approaches and an Extension to Meshfree Methods.
*Sci. Comput. Tech. Univ. Braunschweig*, pp. 1–68. - Zienkiewicz, O. C., & Taylor, R. L. (2000).
*The Finite Element Method: Fluid Dynamics*. Butterworth and Heinemann, Oxford. - Petinrin, M. O., Dare, A. A., & Asaolu, G. O. (2016). Finite Element Stabilization Methods and Solvers for Heat Exchanger Applications: A Review.
*Int. Conf. Mech. Eng. Energy Technol. Manag*., pp. 977–987. - Mohammadi, K., Heidemann, W., & Muller-Steinhagen, H. (2009). Numerical Investigation of the Effect of Baffle Orientation on Heat Transfer and Pressure Drop in a Shell and Tube Heat Exchanger With Leakage Flows.
*Heat Transf.*, Vol. 30, pp. 1123–1135, doi: 10.1080/01457630902972694. - Wang, Q., Chen, Q., Chen, G., & Zeng, M. (2009). Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles.
*International Journal of Heat and Mass Transfer*, Vol. 52, pp. 1214–1222, doi: 10.1016/j.ijheatmasstransfer.2008.09.009. - Zhang, J., Li, B., Huang, W., Lei, Y., He, Y., & Tao, W. (2009). Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles.
*Chemical Engineering Science*, Vol. 64, pp. 1643–1653, doi: 10.1016/j.ces.2008.12.018. - Zhang, M., Meng, F., & Geng, Z. (2015). CFD simulation on shell-and-tube heat exchangers with small-angle helical baffles.
*Chem. Sci. Eng.*, pp. 1–11, doi: 10.1007/s11705-015-1510-x.