Rational Choice of a Basket for the Rotational Vibropriller | Journal of Engineering Sciences

Rational Choice of a Basket for the Rotational Vibropriller

Author(s): Yurchenko O.1, Sklabinskyi V.1, Ochowiak M.2, Ostroha R.1*, Gusak O.1

1 Faculty of Technical Systems and Energy Efficient Technologies, Sumy State University, 2, Rymskogo-Korsakova St., 40007, Sumy, Ukraine;
2 Faculty of Chemical Technology of Poznan University of Technology, Poznan University of Technology, 4, Berdychowo St., 60-965 Poznan, Poland

*Corresponding Author’s Address: [email protected]

Issue: Volume 9, Issue 1 (2022)

Submitted: March 11, 2022
Accepted for publication: June 3, 2022
Available online: June 7, 2022

Yurchenko O., Sklabinskyi V., Ochowiak M., Ostroha R., Gusak O. (2022). Rational choice of a basket for the rotational vibropriller. Journal of Engineering Sciences, Vol. 9(1), pp. F16-F20, doi: 10.21272/jes.2022.9(1).f3

DOI: 10.21272/jes.2022.9(1).f3

Research Area:  CHEMICAL ENGINEERING: Processes in Machines and Devices

Abstract. The use of processing units for the production of mineral fertilizers in the industry in today’s market requires improved product quality and increased productivity. As a result, there is a need to change the design of existing units or some structural elements. Rotary vibroprillers, having a relatively simple design, can be of different designs that directly affect the productivity indicators mentioned above. The study considers the influence of the shape of the basket bottom on the quality of the rotational vibroprillers. After using the governing equation of prills motion in the airflow, a program was developed for automatic control of the rotational speed of the priller based on changes in melt loads. It is established that the size of the spray swath can be changed by varying the rotational speed of the priller. There is a tendency to affect the vibropriller performance by controlling the rotational speed and shape of the basket bottom without performance degradation.

Keywords: process innovation, jet flow, droplet formation, oscillations, energy efficiency.


  1. Kasym, R. T., Skydanenko, M. S., Sklabinskii, V. I. (2012). Methods for Obtaining Droplets of a Monodisperse Composition. Modern Technologies in Industrial Production: Proceedings of the 2nd All-Ukrainian Interuniversity Scientific and Technical Conference, Sumy, April 17-20, 2012, Part 2, pp. 116-117.
  2. Taran, A. L., Dolgalev, Ye. V., Taran, Yu. A. (2006). Calculation algorithm for a priller with a nozzle for the production of lime-ammonium nitrate in baths. Bulletin of MITHT, Vol. 1(3), pp. 42-46.
  3. Kazakova, Ye. A. Granulation and Cooling of Nitrogen-Containing Fertilizers. Chemistry, 1980.
  4. Ostroha, R., Yukhymenko, M., Lytvynenko, A., Bocko, J., Pavlenko, I. (2019). Granulation Process of the Organic Suspension: Fluidized Bed Temperature Influence on the Kinetics of the Granule Formation. In: Ivanov V. et al. (eds) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 463-471, doi: 10.1007/978-3-319-93587-4_48.
  5. Lytvynenko A., Yukhymenko M., Pavlenko I., Pitel J., Mizakova J., Lytvynenko O., Ostroha R., Bocko J. (2019) Ensuring the reliability of pneumatic classification process for granular material in a rhomb-shaped apparatus. Applied Sciences (Switzerland), Vol. 9(8), 1604, doi: 10.3390/app9081604.
  6. Ostroha, R., Yukhymenko, M., Lytvynenko, A., Bocko, J., Pavlenko, I. (2019). Granulation process of the organic suspension: Fluidized bed temperature influence on the kinetics of the granule formation. Lecture Notes in Mechanical Engineering, Vol. F2, pp. 463-471.
  7. Mann, H., Roloff, C., Hagemeier, T., Thevenin, D., Tomas, J. (2017). Model-based experimental data evaluation of separation efficiency of multistage coarse particle classification in a zigzag apparatus. Powder Technology, Vol. 313, pp. 145-160, doi: 10.1016/j.powtec.2017.03.003.
  8. Pavlenko, I., Sklabinskyi, V., Pitel, J., Zidek, K., Kuric, I., Ivanov, V., Skydanenko, M., Liaposhchenko, O. (2020). Effect of superimposed vibrations on droplet oscillation modes in prilling process. Processes, Vol. 8(5), 566, doi: 10.3390/pr8050566.
  9. Straka, L., Panda, A. (2018). Optimal preventive maintenance schedule of slewing rings for demanding production machine. MM Science Journal, Vol. 12, pp. 2696-2700, doi : 10.17973/MMSJ.2018_12_201872.
  10. Fesenko, A., Basova, Y., Ivanov, V., Ivanova, M., Yevsiukova, F., Gasanov, M. (2019). Increasing of equipment efficiency by intensification of technological processes. Periodica Polytechnica Mechanical Engineering, Vol. 63(1), pp. 67-73, doi: 10.3311/PPme.13198.
  11. Demianenko, M., Starynskyi, O., Pavlenko, I., Sklabinskyi, V., Trojanowska, J., Skydanenko, M., Liaposhchenko, O., Ivanov, V. (2022). Impact of Dynamic Characteristics of Gears on the Reliability of Prilling Equipment. In: Knapcikova L., Peraković D., Perisa M., Balog M. (eds) Sustainable Management of Manufacturing Systems in Industry 4.0. EAI/Springer Innovations in Communication and Computing. Springer, Cham, pp. 197-211, doi: 10.1007/978-3-030-90462-3_13.
  12. Chen, S., Ouyang, O., Vandewalle, L.A., Heynderickx, G. J., Van Geem, K. M. (2022). CFD analysis on hydrodynamics and residence time distribution in a gas-liquid vortex unit. Chemical Engineering Journal, Vol. 446(2), 136812, doi: 10.1016/j.cej.2022.136812.
  13. Xu, Z., Wang, T., Che, Z. (2022). Droplet breakup in airflow with strong shear effect. Journal of Fluid Mechanics, Vol. 941, A54, doi:10.1017/jfm.2022.326.
  14. Artyukhov, A. Ye., Kononenko, M. P. (2013). Analysis of the results of the industrial implementation of rotary vibroprillers of melt in units for the production of ammonium nitrate. Bulletin of Sumy State University. Series “Technical Sciences Series”, Vol. 1, pp. 35-41.

Full Text

© 2014-2021 Sumy State University.
"Journal of Engineering Sciences"
ISSN 2312-2498 (Print), ISSN 2414-9381 (Online).
All rights reserved.